

CGNS/SIDS proposal for extension - 2019/06/13 - CPEX 0043 - v0.2 - page 1/7
Main authors: Marc Poinot (Safran Tech), Yoan Collet (Numeca)
Reviewers:
Contacts: marc.poinot@safrangroup.com; yoan.collet@numeca.com

Family Hierachy as a tree

Motivation
The intensive use of families and hierarchy of families (SIDS 6.2.1) results in:

- a large amount of nodes of type Family_t as direct children of CGNSBase_t,

- an inability to use a Family_t name twice

- the required use of a tool to parse a Family_t hierarchy

As a side-effect of these points, we see now complex family hierarchies mimicking a tree-like structure

by means of their names:

BASE#1 CGNSBase_t

LPC_ROW1_STATOR_SHROUD Family_t

LPC_ROW1_ROTOR_SHROUD Family_t

LPC_ROW2_STATOR_SHROUD Family_t

LPC_ROW2_ROTOR_SHROUD Family_t

And a reference to such one of these family uses the straighforward family name with or without the

base prefix. For example a /BASE#1/Zone/FamilyName we would have LPC_ROW1_STATOR_SHROUD as value.

In this flat representation, we do not take benefits of any actual family hierarchy (SIDS 12.6 note 7)

and we may have unreadable generated names in the case the name reaches the maximum size of 32

chars. Yet the family names are end-user names and should be readable.

Proposal
The example above would have a better structure using a true tree structure, such as :

BASE#1 CGNSBase_t

LPC Family_t

ROW1 Family_t

STATOR Family_t

SHROUD Family_t

ROTOR Family_t

SHROUD Family_t

ROW2 Family_t

STATOR Family_t

SHROUD Family_t

ROTOR Family_t

SHROUD Family_t

The CGNS modifications we propose are:

- Allow Family_t tree structure by adding Family_t as optional child of Family_t

- Change FamilyName_t or FamilyAdditionalName_t value to a path to a Family_t node

This CPEX insures a 100% compatibility with existing CGNS/HDF5 files, CGNS/Python uses and

CGNS/MLL applications.

mailto:marc.poinot@safrangroup.com

CGNS/SIDS proposal for extension - 2019/06/13 - CPEX 0043 - v0.2 - page 2/7
Main authors: Marc Poinot (Safran Tech), Yoan Collet (Numeca)
Reviewers:
Contacts: marc.poinot@safrangroup.com; yoan.collet@numeca.com

About 32 chars limitation
The CGNS/SIDS requires a node name limitation to 32 chars (CGNS/SIDS 3.1, CGNS/FMM, CGNS/MLL).

This historical requirement only applies to the node names, not their values. A node can have a value

of type DataArray_t or Descriptor_t with a string value with much more than 32 chars.

Then a path composed of a suite of node names limited to 32 chars can be stored into a string as a

value. This path is also another way to identify the node and in that case the hierarchy has both a

structuration and naming role :

The families are the identifier the CGNS user should use, all other identifiers such as zone names, BC

names, solution names, are generated and manipulated by tools. These generated node names, in

some cases, are not meaningful (e.g. Domain.0001, HEXA#AC56, BC_TRI_892) and they should NOT

be meaningful. Thus a limitation to 32 for these generated node is acceptable. Moreover, all these

generated node names are able to store a FamilyName_t or AdditionalFamilyName_t node

which can finally hold a more explicit name as a value, as a path like in the example above. A path

can even refer to another CGNSBase_t node than the current you holding the value.

A node of AdditionalFamilyName_t type can have a user defined name, limited to 32 chars, such

as TopologicalPart or SimulationStep or InputField or whatever you want. For example:

TopologicalPart (node name) = /TopologyBase/CFM56/Fan/Blade/Tip (node value)

Then if you need to give a detailed name to nodes, use a value in a FamilyName_t node together

with a Family Hierarchy.

mailto:marc.poinot@safrangroup.com

CGNS/SIDS proposal for extension - 2019/06/13 - CPEX 0043 - v0.2 - page 3/7
Main authors: Marc Poinot (Safran Tech), Yoan Collet (Numeca)
Reviewers:
Contacts: marc.poinot@safrangroup.com; yoan.collet@numeca.com

CGNS/SIDS modifications
Modifications in the CGNS/SIDS 12.6

The Family_t structure contains all information pertinent to a CFD family. This information includes the name attribute or family name, the

boundary conditions applicable to these mesh regions, and the referencing to the CAD databases.

 Family_t :=

 {

 List(Descriptor_t Descriptor1 ... DescriptorN) ; (o)

 FamilyBC_t FamilyBC ; (o)

 List(GeometryReference_t

 GeometryReference1 ... GeometryReferenceN) ; (o)

 List(Family_t Family1 ... FamilyN) ; (o)

 RotatingCoordinates_t RotatingCoordinates ; (o)

 List(FamilyName_t FamilyName1 ... FamilyNameN) ; (o)

 List(UserDefinedData_t UserDefinedData1 ... UserDefinedDataN) ; (o)

 int Ordinal ; (o)

 } ;

Notes
…

7. A hierarchy of families is possible through the list of FamilyName_t nodes. These nodes contain both a user defined node name

and a family name. The node name FamilyParent may be used to specify the family name for the parent of the

current Family_t node.

8. Ordinal is defined in the SIDS as a user-defined integer with no restrictions on the values that it can contain. It may be used here

to attribute a number to the family.

9. A Family_t tree structure can be specified using the list of Family_t children nodes. Into each of these children nodes the

note #7 can be used to have a back tracking of the node parent.

Modifications in the CGNS/SIDS 6.2.1

The green part is a correction of the existing SIDS without relationship with this CPEX.

6.2.1 Base Level Families

The Family_t data structure is used to record geometry reference data. It may also include boundary conditions linked to geometry patches.

For the purpose of defining material properties, families may also be defined for groups of elements. The family-mesh association is defined

under the Zone_t, the ZoneSubRegion_t and BC_t data structures by specifying the family name corresponding to a zone or a boundary

patch. The family name can refer to a Family_t defined in a CGNSBase_t other than the referring Zone_t,

the ZoneSubRegion_t or BC_t. This Family_t node can be a direct child of the CGNSBase_t or a child of another Family_t. The

actual family name has the pattern <CGNSBase>/<FamilyName1>/<FamilyName2>/…/<FamilyNameN>. In this case, the actual

name of the Family_t has to be prefixed by the CGNSBase_t name. The pattern is then basename/familyname, only one single /

character is allowed, and neither of basename nor familyname should be empty. The family-mesh association is defined under

the Zone_t, ZoneSubRegion_t and BC_t data structures by specifying the family name corresponding to a zone, zone sub-region or a

boundary patch in a FamilyName_t node. If the value of the FamilyName node does not have a / character in it, then the name refers to a

family being a direct child of the ancestor CGNS Base of this FamilyName node. Otherwise, if this value has at least one / in it, the pattern

<CGNSBase>/<FamilyName1>/<FamilyName2>/…/<FamilyNameN> is mandatory.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descriptor_t and DataArray_t children

without the restrictions or implicit meanings imposed on these node types at other node locations.

There is no impact to already existing Family_t nodes, the CPEX adds a new optional child node,

existing applications would ignore it.

mailto:marc.poinot@safrangroup.com
https://cgns.github.io/CGNS_docs_current/sids/misc.html#Family
https://cgns.github.io/CGNS_docs_current/sids/cgnsbase.html#Zone
https://cgns.github.io/CGNS_docs_current/sids/bc.html#BC
https://cgns.github.io/CGNS_docs_current/sids/misc.html#UserDefinedData

CGNS/SIDS proposal for extension - 2019/06/13 - CPEX 0043 - v0.2 - page 4/7
Main authors: Marc Poinot (Safran Tech), Yoan Collet (Numeca)
Reviewers:
Contacts: marc.poinot@safrangroup.com; yoan.collet@numeca.com

There is no impact to already existing FamilyName_t of AdditionalFamilyName_t nodes : if the name has

no / the behavior is the same as before the CPEX, if the name has a / then we have the correct

<CGNSBase>/<FamilyName> pattern as before the CPEX.

CGNS/FMM modifications
The Family_t ‘CGNS File Mapping Figures’ of the CGNS/FMM document has to be updated, an

optional node of type Family_t is added to existing description:

CGNS/MLL modifications
The addition of a Family_t node inside a Family_t node would change this positional SIDS type (a node

which position is fixed) into a non-positional SIDS type. This requires a new set of functions to be used

following a cg_goto call. Of course, all Family_t existing functions should operate the same way they

do today, though we add some feature that would be ignored by today’s applications. They refer to a

Family_t node using the int Fam index, which is kept unchanged as the first level index of the family as

returned by cg_nfamilies.

Existing functions

Family Definition Remark (note)

cg_family_write - Create a Family_t node Family path accepted (1)

cg_nfamilies - Get number of families unchanged

cg_family_read - Read family info unchanged

cg_family_name_write - Write multiple family names under Family_t unchanged

cg_nfamily_names - Get number of family names under Family_t unchanged

mailto:marc.poinot@safrangroup.com
https://cgns.github.io/CGNS_docs_current/midlevel/families.html#family

CGNS/SIDS proposal for extension - 2019/06/13 - CPEX 0043 - v0.2 - page 5/7
Main authors: Marc Poinot (Safran Tech), Yoan Collet (Numeca)
Reviewers:
Contacts: marc.poinot@safrangroup.com; yoan.collet@numeca.com

cg_family_name_read - Read multiple family names under Family_t unchanged

Geometry Reference

cg_geo_write - Create a GeometryReference_t node unchanged

cg_geo_read - Read geometry reference info unchanged

cg_part_write - Write geometry entity name unchanged

cg_part_read - Get geometry entity name unchanged

Family Boundary Condition

cg_fambc_write - Write boundary condition type for a family unchanged

cg_fambc_read - Read boundary condition type for a family unchanged

Family Name

cg_famname_write - Write family name Family path accepted (2)

cg_famname_read - Read family name Family path accepted (2)

cg_multifam_write - Write multiple family names Family path accepted (2)

cg_nmultifam - Get number of family names Family path accepted (2)

cg_multifam_read - Read multiple family names Family path accepted (2)

Note (1):

A modification is proposed to:

ier = cg_family_write(int fn, int B, char *FamilyName, int *Fam); - w m

We have to accept a path as FamilyName and create the correct tree of Family_t nodes. Today’s

application would ignore this feature as a Family path is not allowed yet.

Note (2):

FamilyName functions, such as writing or reading FamilyName or AdditionalFamilyName nodes are kept

unchanged for existing applications. We extend the FamilyName value to a path.

New functions
A new set of functions is proposed, it has to be used after a cg_goto call (or similar). We use a function

naming close to the existing set for the positional nodes, but the identification pattern int fn, int B,

int Fam is useless after a cg_goto, this pattern is removed.

Functions Modes

ier = cg_node_family_write(char *FamilyName, int *Fam); - w m

ier = cg_node_nfamilies(int *nfamilies); r - m

ier = cg_node_family_read(char *FamilyName, int *nFamBC, int *nGeo); r - m

ier = cg_node_family_name_write(char *NodeName, char *FamilyName); - w m

ier = cg_node_nfamily_names(int *nNames); r - m

ier = cg_node_family_name_read(int N, char *NodeName, char *FamilyName); r - m

call cg_node_family_write_f(FamilyName, Fam, ier) - w m

call cg_node_nfamilies_f(nfamilies, ier) r - m

call cg_node_family_read_f(FamilyName, nFamBC, nGeo, ier) r - m

There is no new function for the FamilyName read/write features which already are positional.

mailto:marc.poinot@safrangroup.com
https://cgns.github.io/CGNS_docs_current/midlevel/families.html#geometry
https://cgns.github.io/CGNS_docs_current/midlevel/families.html#familybc
https://cgns.github.io/CGNS_docs_current/midlevel/families.html#familyname

CGNS/SIDS proposal for extension - 2019/06/13 - CPEX 0043 - v0.2 - page 6/7
Main authors: Marc Poinot (Safran Tech), Yoan Collet (Numeca)
Reviewers:
Contacts: marc.poinot@safrangroup.com; yoan.collet@numeca.com

ier = cg_geo_write(char *GeoName, char *FileName, char *CADSystem, int *G); - w m

ier = cg_geo_read(int G, char *GeoName,

 char **FileName, char *CADSystem, int *nparts);
r - m

ier = cg_part_write(int G, char *PartName, int *P); - w m

ier = cg_part_read(int G, int P, char *PartName); r - m

call cg_geo_write_f(GeoName, FileName, CADSystem, G, ier) - w m

call cg_geo_read_f(G, GeoName, FileName, CADSystem, nparts, ier) r - m

call cg_part_write_f(G, PartName, P, ier) - w m

call cg_part_read_f(G, P, PartName, ier) r - m

Note:

There is no cg_ngeometry (cg_npart) which would return the number of GeometryReference_t

(GeometryEntity_t) in a Family_t (GeometryReference_t). The actual numbers (indexes) of geometries
and parts are returned values of cg_family_read and cg_geo_read. This geometry/part index is
unchanged, only the Family_t hierarchy is a new feature.

ier = cg_fambc_write(char *FamBCName, BCType_t BCType, int *BC); - w m

ier = cg_fambc_read(int BC, char *FamBCName, BCType_t *BCType); r - m

call cg_fambc_write_f(FamBCName, BCType, BC, ier) - w m

call cg_fambc_read_f(BC, FamBCName, BCType, ier) r - m

Same remark as geometry/part index note above, the FamilyBC_t is unchanged.

mailto:marc.poinot@safrangroup.com

CGNS/SIDS proposal for extension - 2019/06/13 - CPEX 0043 - v0.2 - page 7/7
Main authors: Marc Poinot (Safran Tech), Yoan Collet (Numeca)
Reviewers:
Contacts: marc.poinot@safrangroup.com; yoan.collet@numeca.com

Example 1 – writing a Family hierarchy in BASE#1:

1- Create a new family LCP as CGNSBase_t child (assume file index is 1 and base index is 1)

2- Set the current CGNS/MLL cursor on this new family (goto with absolute path)

3- Add ROW1 child family of current cursor (child of LPC)

4- Set the cursor on this new family ROW1

5- Add STATOR as child of ROW1

6- Set the cursor on this new family STATOR (goto with relative path)

7- Add a GeometryReference_t node as child of /BASE#1/LPC/ROW1/STATOR

int fam1, fam2, fam3; /* new families indexes */

int geo1; /* new geometry index */

cg_family_write(1, 1, “LPC”, &fam1);

cg_goto(1, 1, “Family_t”, fam1, NULL);

cg_node_family_write(“ROW1”, &fam2);

cg_goto(1, 1, “Family_t”, fam1, “Family_t”, fam2, NULL);

cg_node_family_write(“STATOR”, &fam3);

cg_gorel(1, “Family_t”, fam3, NULL);

cg_node_geo_write(“CAD”, “user-file-somewhere.stp”, “STEP”, &geo1);

Notes:

 A goto + cg_node_family_write can replace the step 1

 CGNS/MLL has NO check on CAD format (STEP in this example)

Example 2 – reading a Family hierarchy from BASE#1 (the easy way), we assume the char* variables

already had a memory allocation:

cg_gopath(1, “/BASE#1/LPC/ROW1/STATOR”);

cg_node_geo_read(1, &name, &filename, &CAD);

Known issues

A today’s application would be unable to read a Family hierarchy and thus could not find any reference

to a FamilyBC_t or any other critical data for the CFD solver use.

mailto:marc.poinot@safrangroup.com

