
SIDS-to-Python (CGNS/Python)
Release 3.1.2

The CGNS Steering Committee

CONTENTS

1 CGNS/Python Tree 3
1.1 Commitment with CGNS standard . 3
1.2 The node structure . 4
1.3 Textual representation . 5
1.4 Numpy array mapping . 5
1.5 Data types . 6

2 Specific CGNS/Python topics 7
2.1 The CGNSTree_t type . 7
2.2 Legacy CGNS types alternative . 7
2.3 Links . 7
2.4 C API . 8

3 Examples and tips 11
3.1 IndexRange_t . 11
3.2 IndexArray_t . 12
3.3 DimensionalUnits_t . 12
3.4 Zone_t . 13
3.5 Sub-tree imports . 13
3.6 Sub-tree share . 14

Bibliography 15

i

ii

SIDS-to-Python (CGNS/Python), Release 3.1.2

This document is part of the CGNS documentation. The SIDS-to-Python document describes the CGNS/SIDS
mapping with the Python programming language.

This is version 0.1 of the mapping, approved by the CGNS Steering Committee on March the 2nd 2011.

More information can be found in http://www.cgns.org

CONTENTS 1

http://www.cgns.org

SIDS-to-Python (CGNS/Python), Release 3.1.2

2 CONTENTS

CHAPTER

ONE

CGNS/PYTHON TREE

The CGNS/Python mapping defines a tree structure composed of nodes implemented for the Python programming
langage. A special links structure is also defined for a correct mapping of the management of files on the disk.
The mapping presented here is NOT a library 1, it is the lowest possible correspondance between a CGNS/SIDS
structure and a Python representation. This specification is public and could be used as the basis for Python
based CGNS application interoperability. Python is an interpreted langage and it has a textual representation of its
objects, this representation can be used for CGNS/Python trees as well.

1.1 Commitment with CGNS standard

The mapping of the SIDS into a CGNS/Python structure uses the node as atomic structure. Comparing to
CGNS/ADF or CGNS/HDF5, the contents of a node is unchanged in CGNS/Python. The way we represent
data is different but all nodes attributes found in the section 6 of the SIDS-to-ADF File Mapping Manual 2 are
applicable to the CGNS/Python mapping.

The data type mapping is changed compared to CGNS/ADF or CGNS/HDF5, the actual representation of basic
types such as integers, floats and strings are closely mapped to the Python data types. See the table Data types.

Other elements of the node description are like the CGNS/ADF or CGNS/HDF5 mappings, in particular the
dimensions and the order of these dimensions. The CGNS/SIDS section 3.1 states that the dimensions order
should be the so-called Fortran indexing convention which states the column index is the first. The CGNS/Python
nodes should respect this requirements.

Warning: The Python arrays can be defined with either a C or a Fortran flag, this flag is used to set or to find
the order used for the internal storage of an array. It has no effect on the dimensions of a numpy array, but
on its internal memory layout. It’s up to the user to manage this flag and its impact on the use of an array, in
particular for the read/write on the disks through the C API.

For example, section 6.1.2.2 describes the DimensionalUnits_t node with dimensions values (32,5). This
should be understood as Fortran order values, and thus (32,5) should be found as this in the shape of the numpy
array 3 whichever status the Fortran flag set has.

A numpy array with the C flag set should also have a shape of (32,5), again, the internal representation of this
C array has to be taken into account during read/write operations.

See the C API and Examples and Tips sections about this requirement and its impact on numpy array use.

1 The Open Source pyCGNS Python module defines services on the top of this CGNS/Python mapping.
2 The SIDS-to-ADF [CG2] or SIDS-toHDF5 [CG3] documents of cgns.org have the detailled description of each node of the standard.
3 We show in the textual representation section that this dimension ordering could lead to quite complicated Python code, but our choice

was to take the implementation from the ‘Fortran’ world, which is the basis of the CFD world. It would be up to the user to write his own
application layer for a better Python interface.

3

SIDS-to-Python (CGNS/Python), Release 3.1.2

1.2 The node structure

The structure of a CGNS data set is held in a so-called CGNS/Python tree. The tree is composed of nodes, each
node may have children which are nodes too. The node structure is a python sequence (i.e. list or tuple), composed
of four entries: the name, the value, the list of children and the type.

Attribute type
Name string
Value numpy array
Children list of CGNS/Python nodes
Type string

The CGNS/Python mapping requires that:

The name is a Python string, it should not be empty. The name should not have more than 32 chars
and should not have / in it. The names . (a single dot) And .. (dot dot) are forbidden (but names
with dot and something else are allowed, for example Zone.001 is ok).

The representation of values uses the numpy library array. It makes it possible to share an already
existing memory zone with the Python object. The numpy mapping of the values is detailled hereafter.
An empty value should be represented as None, any other value is forbidden.

The children list can be a list or a tuple. The use of a list is strongly recommended but not manda-
tory. A read-only tree can be declared as a tuple. It is the responsibility of the applications to parse
sequences wether these are lists or tuples. A node without child has the empty list [] as children list.

The type is the Python string representation of the CGNS/SIDS type 4 (i.e. it is the same for
CGNS/ADF or CGNS/HDF5). A type string cannot be empty.

We have now a typical CGNS/Python node, which can be represented with the pattern 5:

node = [<name:string>, <value:numpy.array>, [<child:node>*], <cgns-type:string>]

We use there the textual representation of a Python object. All the Python types used in this CGNS/Python
mapping have a full textual representation. This is detailled in the next section.

The order of the values is significant, for example node[0] should always be the name of the node (Python has
an index ordering starting with zero)

We see now that a CGNS/Python tree is a node. This node has children which have children and so on... Any node
can be held as a subpart of a complete tree, we say each node is a sub-tree. Our CGNS/Python tree has a root node
which is its first node. There is no clear definition of a root node in the CGNS/SIDS or in the SIDS mappings.

In the case of a CGNSBase_t level node, the CGNS/ADF or CGNS/HDF5 defines a sound node which can be
mapped to CGNS/Python. However, the CGNS/SIDS states that several bases can be found in a CGNS tree. The
father node of a base would have the pattern:

root = [<CGNSLibraryVersion:node>, <CGNSBase:node>*]

Which is not consistent with a normal node. We want to remove this exception, we define a CGNS/Python
tree root, or first node, as a list with a compliant CGNS/Python node. which is not the node pattern. Then the
applications have to have a specific way to manage this first node. This lack of root node is not that important when
you use the CGNS/MLL because the function are hidding the actual node implementation. With CGNS/Python,
the user can manage the nodes as true Python objects, and we have to provide him with a sound interface, or at
least as sound as possible. For this consistency reason, the CGNS/Python mapping defines a new type for the root
node, see the CGNSTree_t type section.

4 The CGNS/SIDS type (see [CG1]) is the type of the node, NOT the type of the data contained into the node.
5 The syntax is: <A:T> with A attribute name and T attribute type. The types are detailled in another section. The <A:T>* means zero or

more <A:T> separated by , if more than one.

4 Chapter 1. CGNS/Python Tree

SIDS-to-Python (CGNS/Python), Release 3.1.2

1.3 Textual representation

It is possible to declare a CGNS/Python node as a textual representation. There is a exemple of a zone connectivity
sub-tree with the CGNS/Python in textual mode, a simple PointRange node with two 3D indices:

pr=[’PointRange’,
numpy.array([[1,25],[1,9],[1,1]],dtype=numpy.int32,order=’Fortran’),
[],
’IndexRange_t’]

The PointRange node has no child, the children list is an empty list. The values of the array are initialized with
a list, the order of the elements in the list matches the Fortran indexing: in that example the first point indices are
[1,1,1] and the second point indicies are [25,9,1].

The evaluation of this string by the Python interpreter creates a CGNS/Python compliant node as a Python list.
Please note the types of this pr node, there are only native Python types (list, string, integer) and numpy types or
enumerates. You have to have a variable to hold the node or the CGNS sub-tree, if you have no reference to the
actually created Python objects these will be unreachable and thus garbaged.

The textual representation can be import-ed as any Python textual file, with all possible Python use you can
imagine.

Warning: The Python lists are objects. When you refer to a list you do not copy this list unless you ask
for such a copy. This is important because if you modify an existing list you modify an object that could be
used by others. In the CGNS/Python mapping the children of a node is a list of nodes. If you refer to such a
list without a copy, any modification of this child list will impact nodes using this list. This is detailled in the
section Examples and Tips .

1.4 Numpy array mapping

A CGNS/Python node value is a numpy array, this python object contains the number of dimensions, the dimen-
sions, the data type and the actual data array. Then this implicit information is not a part of the node structure.
As we really want to have the most generic node as possible, we require that even single dimension values should
be stored as numpy array. A single integer, float or a single string should be embedded into a numpy array.

As we mentionned before, an empty value has to be represented by None which is a native Python value, not a
numpy value:

gc=[’Grid#002’,None,[cx,cy,cz],’GridCoordinates_t’]

Here cx, cy, cz, are nodes, not arrays.

The numpy end-user interface makes it possible to define some of these required data as deduction of required
parameters. The number of dimensions is the size of the so-called shape. The dimensions can be forced for empty
values or can be deduced from the data itself:

a=numpy.array([1.4])
b=numpy.ones((5,7,3),’i’)

The first declaration has dimension 1, number of dims 1, data type float64, all deduced from the data declara-
tion, the second has dimensions (5,3,7), number of dimensions 3, data type set as int32.

A numpy array can be declared as C order or Fortran order. There is no requirements in this mapping wether the
internal layout of the memory should be C or Fortran. However, an array should have a shape with the same order
of dimensions as described in the SIDS-to-ADF File Mapping Manual ([CG2]).

Warning: If you use the Python C API, it is the responsability to the application to check the numpy ordering
flag and to manage the arrays with respect to memory layout. See the C API section.

1.3. Textual representation 5

SIDS-to-Python (CGNS/Python), Release 3.1.2

The way to get the node data information regarding the [CG2] datatypes and dimensions requirements is to access
to the numpy object attributes:

pr=numpy.array([[1,2,3],[4,5,6]])

dims=pr.shape
ndims=len(pr.shape)
datatype=pr.dtype
fortranorder=numpy.isfortran(pr)
corder=not numpy.isfortran(pr)

1.5 Data types

A value is a numpy array, the contents of an array is homogeneous and has a data type. The data types of your
CGNS/Python arrays depends on the data type as defined in [CG2].

The type of the data can be set at the creation time, the numpy type is associated to the ADF type required by the
CGNS/SIDS. A bad data type, even if it silently looks like the result you want, would lead to an non-compliant
CGNS tree. The required mapping for the end-user interface uses the types :

ADF type Numpy type(s) Remarks
I4 ‘i’ int32 (1)
I8 ‘l’ int64 (2)
R4 ‘f’ float32 (3)
R8 ‘d’ float64 (4)
C1 ‘c’ ‘|S1’ (5)

All other ADF or numpy types are ignored. The string type is a bit special, see the remark (5) about the strings
used in numpy arrays.

Remarks:

1. The 32bits precision has to be forced, the default integer size in python the int64 data type. To create an
I4 array, you can use:

numpy.array([1,2,3],’i’,order=’Fortran’)

2. The 64bits precision is the default integer in python. To create an I8 array, you can use:

numpy.array([1,2,3],order=’Fortran’)

3. The 32bits precision has to be forced, the default float size in python is float64. To create an R4 array,
you can use:

numpy.array([1.4],’f’,order=’Fortran’)

4. The 64bits precision is the default float in python. To create an R8 array, you can use:

numpy.array([1.4],order=’Fortran’)

5. The array has to be created as a char multi-dimensionnal array. An incorrect creation
with a simple statement such as: numpy.array(’GoverningEquations’) pro-
duces a wrong zero dimension array. The correct creation for a single value could be:
numpy.array(tuple(’GoverningEquations’),’|S1’) where the shape (i.e. the dimensions
of the array) is (18,).

6 Chapter 1. CGNS/Python Tree

CHAPTER

TWO

SPECIFIC CGNS/PYTHON TOPICS

2.1 The CGNSTree_t type

The tree structure of a CGNS data set is broken by the exception of the root node. We take the opportunity of this
new CGNS/Python mapping to add a consistent root node for the CGNS tree 1.

The CGNSTree_t type is a node with the pattern:

root= [<name:string>, None, [<CGNSLibraryVersion:node>, <CGNSBase:node>*], ’CGNSTree_t’]

The children list is the CGNS/ADF-like root node. The CGNSTree node has a user-defined name, no value and a
fixed CGNSTree_t type.

2.2 Legacy CGNS types alternative

The CGNS/SIDS defines all CGNS types and has a rule to suffix them with _t. There are some exceptions where
some CGNS/SIDS types have been translated into strings with a special syntax.

The CGNS/Python mapping allows the use of alternate types for these, the user can either use the legacy type or
the alternate CGNS/Python type. The alternate types are:

CGNS/SIDS type CGNS/Python optional type
"int[1+...+IndexDimension]" DiffusionModel_t
"int[IndexDimension]" Transform_t
"int[IndexDimension]" InwardNormalIndex_t
"int" EquationDimension_t

Please note the ["] character which is part of the CGNS legacy type.

Warning: This CGNS/Python feature adds NON-SIDS type(s) and this should be added or removed by the
user application during the read and the write to the disk with a CGNS/ADF or CGNS/HDF5 compliance. The
CGNS.MAP module has an option to check and remove these alternate types. As long as your application has
interoperability with another CGNS/Python application there should be no problem.

2.3 Links

The links are used to set and get CGNS symbolic links information. This information is relevant only during
read/write operations on disks. A CGNS/Python tree cannot have embedded links, as this tree is a list of lists

1 This CGNS/Python feature adds NON-SIDS type(s) and this should be added or removed by the user application during the read and the
write to the disk with a CGNS/ADF or CGNS/HDF5 compliance.

7

SIDS-to-Python (CGNS/Python), Release 3.1.2

making a link to another list is non-sense in Python 2. The links list is an extra information, not embedded into
the CGNS/Python tree, and only used as disk-related operations.

Warning: In the case a CGNS/Python application would not like to follow a link and then to have some
missing data in its CGNS tree, the so-called linked-from node has to be removed from its parent children list.

This links list is an unsorted list of link-entries with only one entry per link. A link-entry is an ordered list of
Python string values:

The target directory name is the linked-to directory name, as it would be used to open it. It should be
a valid absolute/relative file path as a plain Python string or None.

The target file name is the linked-to file name, as it would be used to open it. It should be a valid
absolute/relative path as a plain Python string. Its path-prefix part and its file extension part can be
empty but the filename itself cannot.

The target node name is the linked-to node name as a plain Python string. It should be the absolute
path of the node in the linked-to file. This value cannot be empty.

The local node name is the absolute path of the node in the source Python/CGNS tree. This plain
Python string cannot be empty.

The links with a second level file, in other words the links in a file you are parsing after following a first link,
are always referred as if you where in the target filename. Then, a list of links can be reused from one parse to
another, because the links list is relative to the target file. The example hereafter can be an input as well as an
output links list, an application would set it for a save or get it from a load:

[[’/tools/CFD/ref#M6’,’M6_A.cgns’ ,’/Base#1/ReferenceState’,
’/Base/ReferenceState’],

[’/tmp/restart’ ,’M6#001.cgns’,’/Base#1/Zone1/FlowSolution#EndOfRun’,
’/Base/Zone1/FlowSolution#Init’]

]

The target directory name information is distinct to the filename, because you can have different actual target files
depending on the search paths you set. This information is relevant as ouput from the read of an actual file, it
should be set to None or ignored for a write. During a write, the only information taken into account should be the
target file name, target node name and the local node name.

In the example above, the entries are interpreted in a different way depending if they are result of a read
or directives for a write. In the case of a read, the first entry means that the file we have read has a
node /Base/ReferenceState which is a link to the node /Base#1/ReferenceState in the file
M6_A.cgns. The first directory of the file search path in which the file M6_A.cgns has been found is
/tools/CFD/ref#M6. In the case of a write, the same entry means that the application should create a link for
the node /Base/ReferenceState when it reaches it. This link would have M6_A.cgns as target file and
/Base#1/ReferenceState as target node. The /tools/CFD/ref#M6 value is ignored.

Warning: The links list is relative to the current tree. If you want to track links of links your application has
to manage this by itself, setting or getting links list during the different tree traversals.

2.4 C API

There is no requirement on the way you would create or manage a numpy array at the C API level. But you have to
remember that the definition of the node contents is SIDS-to-ADF which states that data arrays and index ordering
use the Fortran convention.

You can manage all your numpy arrays with the C order in memory, but you have to be sure that the storage on the
disk, i.e. using ADF or HDF5, has the correct fortran orders. The storage also has to be contiguous in the memory.

2 A Python list is a reference, if you put a list as a child of another list the Python interpreter actually refers to the child list. Then a child
can be shared by two different lists if you do not ask for a copy. In other words, the links are the natural way of referencing to lists in Python.

8 Chapter 2. Specific CGNS/Python topics

SIDS-to-Python (CGNS/Python), Release 3.1.2

When you create or obtain a copy of a numpy array you can set a flag to force a C or Fortran ordering: one of the
NPY_CCONTIGUOUS or NPY_FCONTIGUOUS flag can be set. In the case of a NPY_CCONTIGUOUS flag set,
it is up to the application to set a Fortran memory layout and a Fortran index ordering while reading/writing data
to/form a CGNS/ADF or CGNS/HDF5 file 3.

The numpy C API allows the share of memory zone. In other words you can have a Fortran or C array you can
directly set as your numpy array without duplication. You can reduce the memory use when your application can
handle this, you can also set the NPY_OWNDATA flag to indicate to numpy that it should not release the array
memory when the numpy array object is garbaged.

3 For example, CGNS.MAP detects th NPY_FCONTIGUOUS and forces a data and dimensions transpose during the read/write (unless the
user forces the CGNS.MAP.S2P_NOTRANSPOSE flag in the load or the save).

2.4. C API 9

SIDS-to-Python (CGNS/Python), Release 3.1.2

10 Chapter 2. Specific CGNS/Python topics

CHAPTER

THREE

EXAMPLES AND TIPS

Python comes from the C world, as well as the numpy library. This means that many behavior are assuming C-
order in dimensions. The CGNS/Python mapping states that arrays should have a Fortran indexing for their actual
data and that the dimension order of the data is those detailled in the [CG2] and [CG3] documents.

We give here some known issues and tips to handle this Fortran indexing in CGNS/Python. We use specific
CGNS/SIDS structures to illustrate our examples.

3.1 IndexRange_t

The IndexRange_t is an integer array of dimensions (IndexDimensions,2) as detailled in 1. The node data, in the
example here, is two points with three indices. The Python-ish way to define them is to have a list of two lists
of integers, which leads to problems if you forget your fortran order. We want to set a node with the following
Python code:

node=[’PointRange’, a, [], ’IndexRange_t’]

Now we see how to declare a correct a variable as a numpy array. If you do not specify an order to numpy, the
default is the C-order:

>>> a=numpy.array([[1,2,3],[4,5,6]],dtype=numpy.int32)
>>> numpy.isfortran(a)
False
>>> a[0]
[1,2,3]
>>> a.shape
(2,3)

This numpy array is correct but you would have to transpose dimensions are memory layout before a storage on
disk. Or you can enter the list itself using an explicit Fortran-order:

>>> a=numpy.array([[1,4],[2,5],[3,6]],dtype=numpy.int32)
>>> numpy.isfortran(a)
False
>>> a[0]
[1,4]
>>> a.shape
(3,2)

In that case, the shape is correct but the user has no mean to know wether your convention is C or Fortran. You
can set the fortran flag for this. The possible creation of the array above is then:

>>> a=numpy.array([[1,4],[2,5],[3,6]],dtype=numpy.int32,order=’Fortran’)
>>> numpy.isfortran(a)
True
>>> a[0]
[1,4]

11

SIDS-to-Python (CGNS/Python), Release 3.1.2

>>> a.shape
(3,2)

Then an application can detect your array has Fortran order and should be stored as found without any transpose.

3.2 IndexArray_t

There is another example switching from one order to another, this is used to add a point in a list in an easier way

node=[’PointList’, a, [], ’IndexArray_t’]

The possible creation of the array a above is then:

>>> a=numpy.array([[1,4],[2,5],[3,6]],dtype=numpy.int32,order=’Fortran’)
>>> a
array([[1, 4],

[2, 5],
[3, 6]], dtype=int32)

>>> a=numpy.array(a.T.tolist()+[[7,8,9]],dtype=numpy.int32,order=’Fortran’).T
>>> a
array([[1, 2, 3],

[4, 5, 6],
[7, 8, 9]], dtype=int32)

You see that the syntax is completely unreadable, we use the numpy transpose attribute T to switch from Fortran
to C order and back.. If you start with the C order, the Python syntax is clear:

>>> a=numpy.array([[1,2,3],[4,5,6]],dtype=numpy.int32)
>>> a
array([[1,2,3],

[4,5,6], dtype=int32)

>>> a=numpy.array(a.tolist()+[[7,8,9]],dtype=numpy.int32)
>>> a
array([[1, 2, 3],

[4, 5, 6],
[7, 8, 9]], dtype=int32)

And the application in charge of the write to the disk that would detect the abscence of Fortran flag and then
transpose the array and its dimension.

3.3 DimensionalUnits_t

This node contains strings. The strings are an issue in CGNS/Python because we want to use the raw level for
numpy (instead of numpy module proposed for string manipulation). We want to keep a common interface for all
nodes and we do not want an exception with strings. The DimensionalUnits_t node can be defined as:

node=[‘DimensionalUnits‘, a, [], ‘DimensionalUnits_t‘]

Now we see how we can defined the numpy array in variable a. The DimensionalUnits_t states we need a (32,5)
array of chars. In the case of a fixed size multi-dimensionnal string array, each entry should be split as a sequence
with a fixed max size (usually 32 chars):

a=numpy.array([
tuple(’%-32s’%’Kilogram’),
tuple(’%-32s’%’Meter’),
tuple(’%-32s’%’Second’,)
tuple(’%-32s’%’Kelvin’),

12 Chapter 3. Examples and tips

SIDS-to-Python (CGNS/Python), Release 3.1.2

tuple(’%-32s’%’Radian’),
],’|S32’,order=’Fortran’).T

The shape of the resulting array is (32,5) again note the T at the end of the command which produces the
transpose. You can use a S32, |S1 or c type directive. An important point in this string as an array is the trailing
spaces you have to fill the array cell. You have to use a string.strip before any string operation unless your
Python application is aware of this forced size.

3.4 Zone_t

There we have an interesting example with the use of a data of a node. The Zone_t node has the dimensions of
the zone. These dimensions are a data and theses data values should be used as dimension attribute of the children
nodes. In other words, the user takes the Zone_t dimensions and creates a numpy array with them:

zonenode=[’Zone001’,zonedims,zonechildrenlist,’Zone_t’]

The zonedims numpy array can b set as:

zonedims=numpy.array([[3,2,0],[5,4,0],[7,6,0]],dtype=numpy.int32,order=’Fortran’)

in the case of a 3D structured zone with (ni,nj,nk)=(3,5,7). If you want to create a solution array with
these dimensions, you can to use the following syntax:

zonevertexsize=zonedims[:,0]
zonecellsize=zonedims[:,1]
zonevertexboundarysize=zonedims[:,2]

This numpy syntax allows the user to take the whole column as a so-called slice.

3.5 Sub-tree imports

For example, the following snippet imports a truncated ReferenceState:

import numpy

refvalues=[
[’Mach’,numpy.array([0.2]),[],’DataArray_t’]
[’Reynolds’,numpy.array([23300000.0]),[],’DataArray_t’]
[’LengthReference’,numpy.array([0.5]),[],’DataArray_t’]
[’Density’,numpy.array([1.22524863848]),[],’DataArray_t’]

]

data=[’ReferenceState’,None,refvalues,’ReferenceState_t’]

Once import-ed, your Python code can insert this node in its structure (here our previous code snippet is in the file
refstate.py:

import numpy
import restate

tree=[’CGNSTree’,None,[],’CGNSTree_t’]
base=[’Fuselage’,numpy.array([3,3],dtype=numpy.int32),[],’CGNSBase_t’]

tree[2].append(base)
base[2].append(restate.data)

3.4. Zone_t 13

SIDS-to-Python (CGNS/Python), Release 3.1.2

3.6 Sub-tree share

A list is a reference. If you put a list into another one, you do not perform a copy, you use a reference. Then the
modification of the first list is in the second:

>>> a=[1,2,3]
>>> b=[a,[4,5,6]]
>>> b
[[1, 2, 3], [4, 5, 6]]

>>> a[1]=9
>>> b
[[1, 9, 3], [4, 5, 6]]

You always have to take care of the lists, in particular if you use large CGNS/Python trees you want to share to
optimize memory. Another point to keep in mind is that numpy copies do NOT propagate Fortran flag.

3.6.1 Glossary

cgns.org In this document, cgns.org refers to the official CGNS web site and by extension to its contents. For
example, the cgns.org documentation is the official documentation found on this web site. CGNS stands for
CFD General Notation System.

CGNS/SIDS The specification of the CGNS data model. This cgns.org document is the reference for the speci-
fication of a CGNS compliant tree at the conceptual level. The implementation is achieved once a mapping
has been selected (e.g. CGNS/ADF, CGNS/HDF or CGNS/Python). SIDS stands for Standard Interface
Data Structures.

CGNS/MLL The implementation of the CGNS/ADF and CGNS/HDF specifications. This librarie and its C and
Fortran APIs are available on cgns.org web site. MLL stands for mid-level library’ (ADF and HDF5 are the
‘low-level libraries).

CGNS/ADF The cgns.org mapping document describing the implementation of SIDS on the ADF storage layer.
This doesn’t include the C or fortran actual implementation which is available only in the CGNS/MLL
librarie. ADF stands for Advanced Data Format developed by Boeing and NASA.

CGNS/HDF The cgns.org mapping document describing the implementation of SIDS on the HDF5 storage
layer. This doesn’t include the C or fortran actual implementation which is available only in the CGNS/MLL
librarie. HDF stands for Hierarchical Data Format developed by the hdf group.

Python Python is a programming langage. Its success comes from its easy and powerful syntax and its capabili-
ties in being extended.

numpy The most used numerical library for the Python programming langage.

14 Chapter 3. Examples and tips

BIBLIOGRAPHY

[CG1] CGNS SIDS - Standard Interface Data Structure http://www.grc.nasa.gov/WWW/cgns/sids

[CG2] SIDS-to-ADF Mapping Reference Manual http://www.grc.nasa.gov/WWW/cgns/filemap

[CG3] SIDS-to-HDF Mapping Reference Manual http://www.grc.nasa.gov/WWW/cgns/filemap_hdf

[PY1] Python Programming langage http://www.python.org

[PY2] Numpy http://numpy.scipy.org

15

http://www.grc.nasa.gov/WWW/cgns/sids
http://www.grc.nasa.gov/WWW/cgns/filemap
http://www.grc.nasa.gov/WWW/cgns/filemap_hdf
http://www.python.org
http://numpy.scipy.org

	CGNS/Python Tree
	Commitment with CGNS standard
	The node structure
	Textual representation
	Numpy array mapping
	Data types

	Specific CGNS/Python topics
	The CGNSTree_t type
	Legacy CGNS types alternative
	Links
	C API

	Examples and tips
	IndexRange_t
	IndexArray_t
	DimensionalUnits_t
	Zone_t
	Sub-tree imports
	Sub-tree share

	Bibliography

