Quick guide to upgrading from CGNS v2.5 to v3.x

This sheet is intended as an aid for people who already use CGNS v2.5 or earlier, who are not sure

what is involved in upgrading to v3.x. The major new capabilities in CGNS are 64-bit integers

(starting in v3.1) and parallel I/O (starting in v3.2). 64-bit integers may be necessary for use with

very large grids (hundreds of millions of nodes or larger) for which cell-to-node pointer lengths (for

example) may exceed the 32-bit integer limit. This sheet also addresses in note 2 how to use v3.x to
write CGNS files that are readable by older (v2.5) CGNS software, if desired.

1.

If you do not need 64-bit integers, then build CGNS v3.x using default 32-bit (if your compiler
complains about cgsize_t in the function prototypes, then use the "enable-legacy" compile
option which defines cgsize_t to be an int).

If you want to be able to write new CGNS files that can be read using older software that only
supports v2.5, then you must build CGNS v3.x using 32-bit (because v2.5 and earlier did not
support 64-bit integers). Furthermore, in your code, use the call cg_set_file_type to set the
CGNS file type to CG_FILE_ADF2, or set the environment variable CGNS_FILETYPE to be
CG_FILE_ADF2 prior to execution. This will force v2.5 compatibility. The call cg_set_file_type
is a run-time command issued before opening the CGNS file with cg_open. See:
http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/midlevel/fileops.html. Note that
CGNS software can always read older CGNS files (backward compatibility is ensured), but
CGNS files written using a major new release are typically not readable by older CGNS
software (forward compatibility is not ensured).

If you need 64-bit integers (because your grids are very large or because your code uses 64-
bit integers), then build CGNS v3.x using "enable-64bit" (and without "enable-legacy"). Your
software that interacts with CGNS must also use 64-bit integers as appropriate. Resulting
CGNS files will not be readable by older CGNS software.

If you previously used cg_section_partial_write (with 10 arguments in C, 11 arguments in
Fortran), note that a change was made starting in v3.1 to use cg_section_partial_write (with
9 arguments in C, 10 arguments in Fortran) plus cg_elements_partial_write_f. Be sure to
account for this non-backward-compatible change! See:
http://www.grc.nasa.gov/WWW/cgns/CGNS _docs_current/midlevel/grid.html#elements.

If you have possible conflicts between items in the CGNS header file (cgnslib.h) and other
header files (both headers define "Vertex" for example), then build v3.x using "enable-
scope." This enables scoping of all enumeration values in cgnslib.h by prefixing them with a
CG_. If this is used, then your code will need to access the enums via (e.g.) CG_Vertex, but
"Vertex" will still be written to the CGNS file itself. Thus, scoping affects the user code, but
does not affect the CGNS files themselves.

Version 1 1



6. To use parallel read/write, you must have MPI, and must compile and use CGNS with HDFS5,
built with MPI support.

7. Discussion of 64-bit portability issues is provided on:
http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/midlevel/general.html#c-port.
Also, change files (changes_from_2.5.txt and changes_from_3.0.html) are provided with the
source code distribution.

Version 1



