
CGNS Standard Extension to Support
Particle Data

CPEX0046 v2.0 revision 1

Alexandre Minot, Arun Rao - CONVERGE CFD

alexandre.minot@convergecfd.com, arun.rao@convergecfd.com

Revisions
1. Added email addresses

Introduction
The CGNS standard does not offer a practical way to hold particle data. This means that

CFD codes typically use a different file format when exporting results from simulation of
particle-laden flows. An initial attempt was made by Thomas Hauser to include particle data in
the CGNS standard, but the proposal was not completed.

This document supports a new proposal for inclusion of particle data in CGNS. This new
proposal includes modification to the SIDS, MLL, FMM and an example case. We are also
working with Tecplot and Kitware to get the Tec360 and VTK/ParaView CGNS readers updated.
We believe this new proposal covers the needs of the original proposal, while offering a
complete set of modifications to the CGNS standard.

To give a bit more context, this proposal is already implemented in the development
version of our code, CONVERGE CFD, in order to validate the format. We are able to use it to
export results for all of our simulations. For example, this new data structure supports exporting
simulation results of a piston engine simulation, where fuel is injected in the form of liquid
particles, evaporates, and combusts using detailed chemistry mechanisms.

Scope of this document
Most of the information describing the extension is contained in the modified SIDS and

file mapping. The present document is intended to provide a summary of all the modifications,
along with explanations of why we made certain choices. We will also attempt to answer
questions that were raised when the CPEX0046 v1.0 was submitted.

If you find discrepancies in node definitions between this document and the SIDS,
please trust the SIDS. As the community and steering committee offer ideas on the best way to
implement the particle extension, we will be updating the SIDS, file mapping and MLL. This
document might therefore become out of date.

1

mailto:alexandre.minot@convergecfd.com
mailto:arun.rao@convergecfd.com

2

Description of new nodes
A new node is added to the Base_t to hold particle data. This node, of type

ParticleZone_t, contains most of the modifications needed in this extension.

ParticleZone_t node
The ParticleZone_t node contains data pertaining to a given set of particles. It is a child

of the Base_t. There can be multiple ParticleZone_t nodes in a base. The intent is to offer the
ability to create different groups of particles, for instance, solid particles and liquid particles, or
blue particles and red particles. ParticleZone_t can have FamilyName_t and
AdditionalFamilyName_t to help with their differentiation.

Much like Zone_t, ParticleZone_t contains PatricleCoordinates_t and ParticleSolutions_t.
There can be multiple of those and they are linked to the simulation time using
ParticleIterativeData_t.

 ParticleZone_t< ParticleSize > :=

 {

 List(Descriptor_t Descriptor1 ... DescriptorN) ; (o)

 List(ParticleCoordinates_t<ParticleSize>

 ParticleCoordinates MovedParticles1 ... MovedParticlesN) ; (o)

 FamilyName_t FamilyName ; (o)

 List(AdditionalFamilyName_t AddFamilyName1 ... AddFamilyNameN) ; (o)

 List(ParticleSolution_t< ParticleSize>

 ParticleSolution1 ... ParticleSolutionN) ; (o)

 List(IntegralData_t IntegralData1 ... IntegralDataN) ; (o)

 ParticleIterativeData_t<NumberOfSteps> ParticleIterativeData ; (o)

 ReferenceState_t ReferenceState ; (o)

 DataClass_t DataClass ; (o)

 DimensionalUnits_t DimensionalUnits ; (o)

 ParticleEquationSet_t ParticleEquationSet ; (o)

 List(UserDefinedData_t UserDefinedData1 ... UserDefinedDataN) ; (o)

 } ;

3

If the ParticleZone_t is so similar to a Zone_t, why create a new node? Zones are
dedicated to holding a simulation mesh. As in, elements connected to each other. Each particle
is independent of other particles. It has no neighbors. Creating a dedicated node for particles
makes the data structure clearer, and helps users identify data quickly.

Because Zone_t is dedicated to holding meshes, we also decided to put the
ParticleZone_t at the Base_t level, as opposed to inside the Zone_t. Both options have
advantages and drawbacks. Putting the ParticleZone_t inside the Zone_t has the advantage of
designating that the particles belong to a Zone_t. In particular, they would inherit the spatial
bounding box of the Zone_t, which can be helpful for the reader. But, is that really an advantage
though? What if the Zone_t distribution corresponds to the MPI distribution on the HPC? Does it
still make sense to force the particles to follow that distribution? In all likelihood, particles will
also be subject to the same MPI distribution, so it will probably still be easy to write them inside
zones, but does it make sense for the reader?

Another way to see that it is better for particles to be outside the Zone_t is to consider
the case where we have particles only and no mesh. How then do we create a Zone_t? What do
we put for ZoneType and IndexDimension? Unstructured, [0, 0]? We could, but the reader would
have to deliberately ignore that information, which goes against the principle of a data structure.
It is for these reasons that we have decided to have the ParticleZone_t be a child of the Base_t.

The order of particles in a ParticleZone_t carries no meaning. If a particle is first at a
given time, there is no guarantee that the first particle at another time is the same particle. Also,
the number of particles can change over time. This means that particles can break up or
aggregate, but the mechanism is not explicitly traced by the data structure. If particle 0 breaks
up between instant 0 and instant 1, there is simply one more particle in that data structure at
instant 1. If a blue particle aggregates with a red particle to form a purple particle, there is simply
one less blue particle, one less red particle, and one more purple particle. There is also no
global IDs of particles in the current proposal. We think that the necessity for global IDs is rare.
Even though it is not ideal, if global IDs are necessary for a specific application, they can be
added as a DataArray_t in the ParticleSolutions_t alongside results.

Though the order carries no meaning, particle solutions in the ParticleSolutions_t must
follow the same order as the coordinates (unless a PointList is defined).

ParticleZone_t nodes and Zone_t nodes are independent. There is no implicit meaning
that particles in a ParticleZone_t need to be carried by a flow defined in a Zone_t. Simulation
results can be fully defined by a Base_t and a ParticleZone_t if the solver does not solve
equations in an Eulerian framework (or if the user does not wish to export Eulerian data). In
particular, we expect SPH codes to be able to use our extension.

4

ParticleCoordinates_t
The ParticleCoordinates_t node holds the location of the centers of particles. It is a child

of ParticleZone_t. Particles are implicitly defined as 1D elements. They are not connected to
each other, so no connectivity logic is needed. All that is needed is a list of coordinates.

 ParticleCoordinates_t< int ParticleSize, int PhysicalDimension> :=

 {

 DataArray_t<DataType,PhysicalDimension, 2> BoundingBox ; (o)

 List(Descriptor_t Descriptor1 ... DescriptorN) ; (o)

 List(DataArray_t<DataType, ParticleSize>

 DataArray1 ... DataArrayN) ; (o)

 DataClass_t DataClass ; (o)

 DimensionalUnits_t DimensionalUnits ; (o)

 List(UserDefinedData_t UserDefinedData1 ... UserDefinedDataN) ; (o)

 } ;

ParticleCoordinates_t and children DataArray_t inherits ParticleSize_t, the number of
particles, from ParticleZone_t, so no DataSize function is required. Users are encouraged to use
coordinate variable names already defined in appendix A and no extension to appendix A is
needed. In particular, we discourage the use of ParticleCoordinateX and similar as coordinate
variable names.

ParticleCoordinate_t allows the definition of a bounding box, which is why
PhysicalDimension is inherited.

5

ParticleSolution_t
ParticleSolution_t is a child of ParticleZone_t and holds the solution on each particle.

 ParticleSolution_t< int ParticleSize> :=

 {

 List(Descriptor_t Descriptor1 ... DescriptorN) ; (o)

 IndexRange PointRange ; (o)

 IndexArray<DataSize[], int> PointList ; (o)

 List(DataArray_t<DataType, DataSize[]>

 DataArray1 ... DataArrayN) ; (o)

 DataClass_t DataClass ; (o)

 DimensionalUnits_t DimensionalUnits ; (o)

 List(UserDefinedData_t UserDefinedData1 ... UserDefinedDataN) ; (o)

 } ;

A PointRange or PointList is allowed should the user want to define solutions for only a
subset of particles. We therefore need a DataSize function, that returns ParticleSize if no
PointRange or PointList is present, or the number of particles corresponding to PointList or
PointRange. If the community feels like this function should be called ListLenght instead of
DataSize, we can make the change.

We have added the variable names Mass, Radius and Diameter to appendix A as these
are typical solutions of particle simulation.

6

ParticleEquationSet_t
In order to describe models linked to particles, we have created new model and equation

nodes. These nodes are contained in ParticleEquationSet_t which can be a child of Base_t and
ParticleZone_t.

 ParticleEquationSet_t :=

 {

 List(Descriptor_t Descriptor1 ... DescriptorN) ; (o)

 int EquationDimension ; (o)

 ParticleGoverningEquations_t; ParticleGoverningEquations ; (o)

 ParticleCollisionModel_t ParticleCollisionModel ; (o)

 ParticleBreakupModel_t ParticleBreakupModel ; (o)

 ParticleForceModel_t ParticleForceModel ; (o)

 ParticleWallInteractionModel_t ParticleWallInteractionModel ; (o)

 ParticlePhaseChangeModel_t ParticlePhaseChangeModel ; (o)

 DataClass_t DataClass ; (o)

 DimensionalUnits_t DimensionalUnits ; (o)

 List(UserDefinedData_t UserDefinedData1 ... UserDefinedDataN) ; (o)

 } ;

ParticleGoverningEquations is a new enum containing DEM, DSMC and SPH. We
created this node because GoverningEquations inherits CellDimension, which is not defined in
the ParticleZone. If the community is not concerned with that, we can simply allow the original
GoverningEquations nodes in ParticleZone_t.

We also created enums to describe breakup models, collision models, force models (lift
and drag models), wall interaction models, and phase change models. The full list of added
models is: Linear, NonLinear, HardSphere, SoftSphere, LinearSpringDashpot, Pair, BaiGosman,
HertzMindlin, HertzKuwabaraKono, Kuhnke, ORourke, Wruck, Stochastic, NonStochastic, NTC,
KelvinHelmholtz, KelvinHelmholtzACT, RayleighTaylor, KelvinHelmholtzRayleighTaylor,
ReitzKHRT, TAB, ETAB, LISA, SHF, PilchErdman, ReitzDiwakar, Sphere, NonShpere, Tracer,
BeetstraVanDerHoefKuipers, Ergun, CliftGrace, Gidaspow, HaiderLevenspiel, PlessisMasliyah,
SyamlalOBrien, SaffmanMei, TennetiGargSubramaniam, Tomiyama, Stokes,
StokesCunningham, WenYu, Boil, Condense, Flash, Nucleate, Chiang, Frossling,
FuchsKnudsen.

7

Because the ParticleWallInteractionModel_t can only be at the base level or at the
particle level (and not at the wall level), it cannot be used to set different models at different
walls. To do so, we invite users to use the WallFunction_t node, which has been defined with a
loose definition specifically to host many models. If the community does not find this sufficient,
we could allow ParticleWallInteractionModel_t to be a child of BCProperty_t.

Similarly, the current proposal does not provide a way to set different collision models for
interactions between particles stored in different ParticleZones_t. That is, we cannot specify a
specific collision model between red and green particles and a different one between red and
blue particles. We have found no simple solution for this issue.

Conclusion
We have spent much time trying to figure out the best way to extend the CGNS standard

to hold particle data. We find that our proposal is a good intermediary between simplicity and
clarity. Because the new nodes that we propose mimic existing nodes in the Zone_t,
implementation of our extension is straightforward. For example, once we wrote the SIDS and
MLL, it only took us a few hours to implement the CGNS particle export in our code alongside
our CGNS Eulerian export.

On top of this document, we are providing modifications to the SIDS, MLL, and FMM
through the code repository, as well as an example case. We believe that this constitutes a
complete proposal. If it is not, please let us know so we might provide additional support.

If the community seems receptive to our proposal, we will move forward on getting the
Tec360 and VTK/ParaView CGNS readers updated, so they might be ready to test as our
proposal awaits acceptance.

8

