

CPEX0044: Encoding sets of functions in generic variables

Koen Hillewaert (koen.hillewaert@cenaero.be)

1 Introduction
CGNS currently can not encode data provided as analytical expressions nor functions. This
functionality however would allow to

- Introduce interpolatory functions for high order meshes/solutions
- Specify expressions for boundary conditions
- Encode generic constitutive equations

Given the range of applications, one would like to

- specify independent variables, which can be predefined for a specific application (eg. for
interpolation functions, we could expect the presence of parametric coordinates u,v,w).

- Specify parameter constants and macros for repeating expressions.
- Provide all functions supported by compilers

Typically not a single function is required, but rather coherent sets of functions should be defined.

Fortunately, there are a number of open source libraries that provide this functionality, using a
syntax which is rather close to code notation in C or fortran. The proposal is to encode functions
by using this syntax as it already constitutes a de facto standard and is at the same time fairly
simple and easily readable.

2 Proposed extension of the SIDS

The extension introduces a new FunctionSet_t node, the children can be implemented using
the Descriptor_t nodes. The FunctionSet_t are integrated in a dedicated node “FunctionSets”
in CGNSBase_t.

2.1 FunctionSets leaf in CGNSBase_t

Name = Functions
Type =
DataType = I
data = <number of function sets>
Cardinality 0:1

 Children Comments

 name = Function sets
datatype = FunctionSet_t
dims = [N]
data = <function sets>
Cardinality = 1:1

2.2 FunctionSet_t

The extension concerns the introduction of a new leaf type, FunctionSet_t in the Functions_t leaf
in CGNSBase_t. It is composed as:

name = <user defined>
type = FunctionSet_t
datatype = C1
data = <description of the function set>
cardinality = 0:N

 Children Comments

 name = Variables
type = Descriptor_t
datatype = C1
dims = [N]
data = <name of the variables>
cardinality = 1:1

each line of data is a variable name

 name = Functions
type = Descriptor_t
datatype = C1
dims = [N]
data = <function expressions>
cardinality = 1:1

each line of data is an expression

 name = Parameters
type = Descriptor_t
dims = [N]
data = <names of the parameters>
cardinality 0:1

each line contains a parameter name, that can
be used in the functions defined in “Functions”

 name = ParameterValues
type = Real_32
dims = [N]
data = <values of the parameters>
cardinality 0:1

each line contains a parameter value, in the
order of the names in the “Parameters” block

Only one Variables, Parameters, ParameterValues and Functions blocks are
allowed. Extra Descriptor_t or UserDefined_t nodes are allowed.

2.3 Supported expressions

The “Functions” block consists of a semicolon separated list of strings, each of which corresponds
to a single function. The expressions can be any valid mathematical expression involving numbers,
any of the variables, the parameters and the following ingredients:

- Structuring operators
- Leading minus “-”
- (Nested) bracketed expressions “(...)”

- Binary operators
- Standard : “-”, “+”, “/”, “*”
- “%” (modulo)
- “^” (power)

- Standard single argument functions
- Exponential: “exp” (natural exponential) , “log” (natural log), “log10” (base 10 log),

“log2” (base 2 log)
- Trigonometric: “sin”, “cos”, “tan”, “asin”, “acos”, “atan”, “arccsin”, “arccos”,

“arctan”
- Hyperbolic: “sinh”, “cosh”, “tanh”, “asinh”, “acosh”, “atanh”
- Rounding: “round”, “floor”, “ceil”, “step”

- Predefined constants
- Pi : “pi”, “Pi”
- Natural exponent “e”

2.4 Example

The following Function_t block describes the interpolation in a quadrilateral of 2nd order.

Interpolation_Quad_p2 [Function_t] [MT]

 Variable [Descriptor_t][C1][*]

 u
v

 Function [Descriptor_t][C1][*]

 (u-u^2)*(v-v^2)/4
-(u+u^2)*(v-v^2)/4
(u+u^2)*(v+v^2)/4
-(u-u^2)*(v+v^2)/4
(u^2-1)*(v-v^2)/2
(u+u^2)*(v^2-1)/2
(1-u^2)*(v-v^2)/2
(u-u^2)*(v^2-1)/2
(u^2-1)*(v^2-1)

3 Interface in the mid-level library

3.1 Accessing function sets

The FunctionSet_t is to be accessed using the general navigation functions, described in the
section “Navigating a CGNS File”. Therefore, the functions need to allow a new keyword
FunctionSet_t. Eg. when we have several FunctionSet_t in Base basenum, within file filenum. The
third is named “InterpolationTet4”. E.g. to access the functions, one can use any of the following

cg_goto(filenum, basenum, "FunctionSets", 0, “FunctionSet_t”,1,”Functions”,0,NULL);
cg_goto(filenum, basenum,"FunctionSets”,0,”InterpolationTet4",0,”Functions”,0, NULL);
cg_gopath(filenum, "/Base/FunctionSets/InterpolationTet4/Functions/");

Subsequently, to learn the number of functions one can use

int nbFunctions;
cg_ndescriptors(&nbFunctions);

And finally to get one of the functions, eg. the 5th

char* function5;
cg_descriptor_read(5,name, &function5);

3.2 Modifications to the manual

3.2.1 Manual node “Navigating a CGNS File”

A specific task should be added to the following paragraph:

“A few other nodes are not allowed to be deleted from the database because these are
required nodes as defined by the SIDS, and deleting them would make the file non-CGNS
compliant. These are:

●
● FunctionSet_t: Function and Variable

