CPEX0044: Encoding sets of functions in generic variables

Koen Hillewaert (koen.hillewaert@cenaero.be)

1 Introduction

CGNS currently can not encode data provided as analytical expressions nor functions. This functionality however would allow to

- Introduce interpolatory functions for high order meshes/solutions
- Specify expressions for boundary conditions
- Encode generic constitutive equations

Given the range of applications, one would like to

- specify independent variables, which can be predefined for a specific application (eg. for interpolation functions, we could expect the presence of parametric coordinates u,v,w).
- Specify parameter constants and macros for repeating expressions.
- Provide all functions supported by compilers

Typically not a single function is required, but rather coherent sets of functions should be defined.

Fortunately, there are a number of open source libraries that provide this functionality, using a syntax which is rather close to code notation in C or fortran. The proposal is to encode functions by using this syntax as it already constitutes a de facto standard and is at the same time fairly simple and easily readable.

2 Proposed extension of the SIDS

The extension introduces a new <code>FunctionSet_t</code> node, the children can be implemented using the <code>Descriptor_t</code> nodes. The <code>FunctionSet_t</code> are integrated in a dedicated node "FunctionSets" in CGNSBase_t.

2.1 FunctionSets leaf in CGNSBase_t

Name = Functions Type = DataType = I data = <number function="" of="" sets=""> Cardinality 0:1</number>			
	Children	Comments	
	name = Function sets datatype = FunctionSet_t dims = [N] data = <function sets=""> Cardinality = 1:1</function>		

2.2 FunctionSet_t

The extension concerns the introduction of a new leaf type, FunctionSet_t in the Functions_t leaf in CGNSBase_t. It is composed as:

name = <user defined=""> type = FunctionSet_t datatype = C1 data = <description function="" of="" set="" the=""> cardinality = 0:N</description></user>			
	Children	Comments	
	name = Variables type = Descriptor_t datatype = C1 dims = [N] data = <name of="" the="" variables=""> cardinality = 1:1</name>	each line of data is a variable name	
	name = Functions type = Descriptor_t datatype = C1 dims = [N] data = <function expressions=""> cardinality = 1:1</function>	each line of data is an expression	
	name = Parameters type = Descriptor_t dims = [N] data = <names of="" parameters="" the=""> cardinality 0:1</names>	each line contains a parameter name, that can be used in the functions defined in "Functions"	
	name = ParameterValues type = Real_32 dims = [N] data = <values of="" parameters="" the=""> cardinality 0:1</values>	each line contains a parameter value, in the order of the names in the "Parameters" block	

Only one Variables, Parameters, ParameterValues and Functions blocks are allowed. Extra Descriptor_t or UserDefined_t nodes are allowed.

2.3 Supported expressions

The "Functions" block consists of a semicolon separated list of strings, each of which corresponds to a single function. The expressions can be any valid mathematical expression involving numbers, any of the variables, the parameters and the following ingredients:

- Structuring operators
 - Leading minus "-"
 - (Nested) bracketed expressions "(...)"
- Binary operators
 - Standard : "-", "+", "/", "*"
 - "%" (modulo)
 - "^" (power)
- Standard single argument functions
 - Exponential: "exp" (natural exponential), "log" (natural log), "log10" (base 10 log), "log2" (base 2 log)
 - Trigonometric: "sin", "cos", "tan", "asin", "acos", "atan", "arccsin", "arccos", "arctan"
 - Hyperbolic: "sinh", "cosh", "tanh", "asinh", "acosh", "atanh"
 - Rounding: "round", "floor", "ceil", "step"
- Predefined constants
 - Pi : "pi", "Pi"
 - Natural exponent "e"

2.4 Example

The following Function_t block describes the interpolation in a quadrilateral of 2nd order.

Interpolation_Quad_p2 [Function_t] [MT]				
	Variable [Descriptor_t][C1][*]			
		u v		
	Function [Descriptor_t][C1][*]			
		$\begin{array}{l} (u - u^{2})^{*}(v - v^{2})/4 \\ -(u + u^{2})^{*}(v - v^{2})/4 \\ (u + u^{2})^{*}(v + v^{2})/4 \\ -(u - u^{2})^{*}(v + v^{2})/4 \\ (u^{2} - 1)^{*}(v - v^{2})/2 \\ (u + u^{2})^{*}(v^{2} - 1)/2 \\ (1 - u^{2})^{*}(v - v^{2})/2 \\ (u - u^{2})^{*}(v^{2} - 1)/2 \\ (u^{2} - 1)^{*}(v^{2} - 1) \end{array}$		

3 Interface in the mid-level library

3.1 Accessing function sets

The FunctionSet_t is to be accessed using the general navigation functions, described in the section "Navigating a CGNS File". Therefore, the functions need to allow a new keyword FunctionSet_t. Eg. when we have several FunctionSet_t in Base basenum, within file filenum. The third is named "InterpolationTet4". E.g. to access the functions, one can use any of the following

cg_goto(filenum, basenum, "FunctionSets", 0, "FunctionSet_t",1,"Functions",0,NULL); cg_goto(filenum, basenum,"FunctionSets",0,"InterpolationTet4",0,"Functions",0, NULL); cg_gopath(filenum, "/Base/FunctionSets/InterpolationTet4/Functions/");

Subsequently, to learn the number of functions one can use

int nbFunctions;
cg_ndescriptors(&nbFunctions);

And finally to get one of the functions, eg. the 5th

char* function5; cg_descriptor_read(5,name, &function5);

3.2 Modifications to the manual

3.2.1 Manual node "Navigating a CGNS File"

A specific task should be added to the following paragraph:

"A few other nodes are not allowed to be deleted from the database because these are required nodes as defined by the SIDS, and deleting them would make the file non-CGNS compliant. These are:

-
- FunctionSet_t: Function and Variable