
CFD General Notation System (CGNS)
Usage for unstructured grids

Edwin van der Weide
Stanford University

2

Example Unstructured Grid

3

4

Unstructured grid storage

• Several possibilities to store an unstructured grid.
– Every element type is stored in a separate Elements_t node.

Recommended.

– One Elements_t node, which stores all elements using the MIXED

Element type.

– Store all elements as arbitrary polygons, NGON_n Element type.

– Arbitrary combinations of the possibilities above.

– Pros

• Flexibility.

– Cons

• Reading becomes complicated.

5

Connectivities (linear elements)

See http://www.grc.nasa.gov/WWW/cgns/sids/conv.html#unstructgrid

for all supported elements.

TRI_3
QUAD_4

TETRA_4

PYRA_5

PENTA_6

HEXA_8

6

Info in the zone

• # elements = # elements of highest dimension.
– E.g. for a 3D problem the number elements of the surface grid

should NOT be stored in the zone.

Number of grid points

Number of volume elements

7

Single Zone vs. Multiple Zones

Single Zone
No relative motion

Multiple Zones
Relative motion or non-matching grids

Multiple zones can be used to store a domain decomposition

Drawback: not very flexible

Better: use the partial read/write functions

QuickTime™ and a
 decompressor

are needed to see this picture.

8

Example – CGNS Code (1)
#include “cgnslib.h”

/* Open the CGNS for reading and check if the file was found. */

if(cg_open(gridFile, MODE_READ, &fileInd) != CG_OK)

Terminate(“readGridCGNS”, cg_get_error());

/* Determine the of bases in the grid. This example assumes */

/* one base. However it is allowed to have multiple bases. */

if(cg_nbases(fileInd, &nBases)!= CG_OK)

Terminate(“readGridCGNS”, cg_get_error());

if(nBases != 1)

Terminate(“readGridCGNS”, “This example assumes one base”);

base = 1;

/* Check the cell and physical dimensions of the bases. */

/* Both should be 3. */

if(cg_base_read(fileInd, base, cgnsName, &cellDim,

&physDim) != CG_OK)

Terminate(“readGridCGNS”, cg_get_error());

9

10

Example – CGNS Code (2)
/* Read the number of zones in the grid. */

/* This example assumes one zone. */

if(cg_nzones(fileInd, base, &nZones) != CG_OK)

Terminate(“readGridCGNS”, cg_get_error());

if(nZones != 1)

Terminate(“readGridCGNS”, “This example assumes one zone”);

zone = 1;

/* Check the zone type. This should be Unstructured. */

if(cg_zone_type(fileInd, base, zone, &zoneType) != CG_OK)

Terminate(“readGridCGNS”, cg_get_error());

if(zoneType != Unstructured)

Terminate(“readGridCGNS”, “Unstructured zone expected”);

/* Determine the number of vertices and volume elements in this */

/* zone (and thus in the grid, because one zone is assumed). */

if(cg_zone_read(fileInd, base, zone, zoneName, sizes) != CG_OK)

Terminate(“readGridCGNS”, cg_get_error());

nVertices = sizes[0];

nVolElements = sizes[1];

11

12

Example – CGNS Code (3)
/* Determine the number and names of the coordinates. */

if(cg_ncoords(fileInd, base, zone, &nCoords) != CG_OK)

Terminate(“readGridCGNS”, cg_get_error());

if(cg_coord_info(fileInd, base, zone, 1, &dataType, name) != CG_OK)

Terminate(“readCGNS”, cg_get_error());

/* Read the x-coordinates. The y and z-coordinates can be read */

/* similarly. Just replace CoordinateX by CoordinateY and */

/* CoordinateZ respectively. This assumes Cartesian coordinates */

/* in double precision. Note that CGNS starts the numbering at */

/* 1 even if C is used. */

one = 1;

if(cg_coord_read(fileInd, base, zone, “CoordinateX”, realDouble,

&one, &nVertices, coorX) != CG_OK)

Terminate(“readGridCGNS”, cg_get_error());

/* Determine the number of sections for this zone. Note that */

/* surface elements can be stored in a volume zone, but they */

/* are NOT taken into account in the number obtained from */

/* cg_zone_read. */

if(cg_nsections(fileInd, base, zone, &nSections) != CG_OK)

Terminate(“readGridCGNS”, cg_get_error());

13

14

Example – CGNS Code (4)
/* Loop over the number of sections and read the element */

/* connectivities. As CGNS starts the numbering at 1 the */

/* for-loop starts at 1 as well. */

for(sec=1; sec<=nSections; sec++)

{

/* Determine the element type and set the pointer for the */

/* connectivity accordingly. */

if(cg_section_read(fileInd, base, zone, sec, secName, &type,

&eBeg, &eEnd, &nBdry, &parentFlag) != CG_OK)

Terminate(“readGridCGNS”, cg_get_error());

switch (type)

{

case TETRA_4:

conn = connTetra; break;

case PYRA_5:

conn = connPyra; break;

case PENTA_6:

conn = connPrisms; break;

case HEXA_8:

conn = connHexa; break;

15

Example – CGNS Code (5)
case TRI_3:

conn = connTri; break;

case QUAD_4:

conn = connQuad; break;

default:

Terminate(“readGridCGNS”, “Unsupported element encountered.”);

break;

}

/* Read the connectivity. Again, the node numbering of the */

/* connectivities start at 1. If internally a starting index */

/* of 0 is used (typical for C-codes) 1 must be substracted */

/* from the connectivities read. */

if(cg_elements_read(fileInd, base, zone, sec, conn, NULL) != CG_OK)

Terminate(“readGridCGNS”, cg_get_error());

}

16

17

Example – CGNS Code (6)
/* Determine the number of boundary conditions for this zone. */

if(cg_nbocos(fileInd, base, zone, &nBocos) != CG_OK)

Terminate(“readGridCGNS”, cg_get_error());

/* Loop over the number of boundary conditions. */

for(boco=1; boco<=nBocos; boco++)

{

/* Read the info for this boundary condition. */

if(cg_boco_info(fileInd, base, zone, boco, bocoName, &bocoType,

&ptsetType, &nBCElem, &normalIndex,

&normListFlag, &normDataType, &nDataSet) != CG_OK)

Terminate(“readGridCGNS”, cg_get_error());

/* Read the element ID’s. */

if(cg_boco_read(fileInd, base, zone, boco, BCElemRead,

NULL) != CG_OK)

Terminate(“readGridCGNS”, cg_get_error());

/* And much more to make it fit into the */

/* internal datastructures. */

}

18

19

Conclusions

• CGNS can store a wide variety of unstructured mesh types.

• Midlevel API offers many functions to read/write CGNS
files, see http://www.grc.nasa.gov/WWW/cgns/midlevel/index.html

• Simple example to read a grid has been given.

• In a real code more API-functions will be used for
checking the available data, etc.

