

Recommended Practice
 AIAA
R-101A-2005

The CFD General Notation System –
Standard Interface Data Structures

AIAA
R-101A-2005

Recommended Practice

The CFD General Notation System –
Standard Interface Data Structures

Maintained by
The CGNS Steering Sub-committee of the AIAA CFD Committee on Standards

Abstract

The CFD General Notation System (CGNS) is a standard for recording and recovering computer
data associated with the numerical solution of the equations of fluid dynamics. The intent is to
facilitate the exchange of CFD data between sites, between applications codes, and across
computing platforms, and to stabilize the archiving of CFD data.

The CGNS system consists of a collection of conventions, and software implementing those
conventions, for the storage and retrieval of CFD data. It consists of two parts: (1) a standard
format for recording the data, and (2) software that reads, writes, and modifies data in that format.
The format is a conceptual entity established by the documentation; the software is a physical
product supplied to enable developers to access and produce data recorded in that format.

The standard format, or paper convention, part of CGNS consists of two fundamental pieces. The
first, known as the Standard Interface Data Structures, is described in this Recommended
Practice. It defines the intellectual content of the information to be stored. The second, known as
the File Mapping, defines the exact location in a CGNS file where the data is to be stored.

AIAA R-101A-2005

ii

Published by
American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Reston, VA 20191

Copyright © 2007 American Institute of Aeronautics and
Astronautics
All rights reserved.

No part of this publication may be reproduced in any form, in an electronic
retrieval system or otherwise, without prior written permission of the publisher.

Printed in the United States of America.

Contents

Foreword vii

1 Introduction 1
1.1 Major Differences from Previous CGNS Versions . 2

1.1.1 Version 2.0, Beta 1 . 3
1.1.2 Version 2.0, Beta 2 . 3
1.1.3 Version 2.1, Beta 1 . 3
1.1.4 Version 2.2, Beta 1 . 4
1.1.5 Version 2.3 . 4
1.1.6 Version 2.4 . 4

2 Design Philosophy of Standard Interface Data Structures 6

3 Conventions 9
3.1 Data Structure Notation Conventions . 9
3.2 Structured Grid Notation and Indexing Conventions . 13
3.3 Unstructured Grid Element Numbering Conventions . 14

3.3.1 1-D (Line) Elements . 15
3.3.2 2-D (Surface) Elements . 16

3.3.2.1 Triangular Elements . 16
3.3.2.2 Quadrilateral Elements . 17

3.3.3 3-D (Volume) Elements . 17
3.3.3.1 Tetrahedral Elements . 17
3.3.3.2 Pyramid Elements . 18
3.3.3.3 Pentahedral Elements . 20
3.3.3.4 Hexahedral Elements . 21

3.3.4 Unstructured Grid Example . 22
3.4 Multizone Interfaces . 24

4 Building-Block Structure Definitions 27
4.1 Definition: DataClass_t . 27
4.2 Definition: Descriptor_t . 27
4.3 Definition: DimensionalUnits_t . 28
4.4 Definition: DimensionalExponents_t . 29
4.5 Definition: GridLocation_t . 30
4.6 Definition: IndexArray_t . 30
4.7 Definition: IndexRange_t . 30
4.8 Definition: Rind_t . 31

5 Data-Array Structure Definitions 32
5.1 Definition: DataArray_t . 32

5.1.1 Definition: DataConversion_t . 33
5.2 Data Manipulation . 34

5.2.1 Dimensional Data . 34

iii

AIAA R-101A-2005

5.2.2 Nondimensional Data Normalized by Dimensional Quantities 35
5.2.3 Nondimensional Data Normalized by Unknown Dimensional Quantities 35
5.2.4 Nondimensional Parameters . 38
5.2.5 Dimensionless Constants . 39

5.3 Data-Array Examples . 39

6 Hierarchical Structures 44
6.1 CGNS Version . 44
6.2 CGNS Entry Level Structure Definition: CGNSBase_t 44
6.3 Zone Structure Definition: Zone_t . 47
6.4 Precedence Rules and Scope Within the Hierarchy . 51

7 Grid Coordinates, Elements, and Flow Solutions 53
7.1 Grid Coordinates Structure Definition: GridCoordinates_t 53
7.2 Grid Coordinates Examples . 55
7.3 Elements Structure Definition: Elements_t . 58
7.4 Elements Examples . 60
7.5 Axisymmetry Structure Definition: Axisymmetry_t . 61
7.6 Rotating Coordinates Structure Definition: RotatingCoordinates_t 63
7.7 Flow Solution Structure Definition: FlowSolution_t 64
7.8 Flow Solution Example . 66

8 Multizone Interface Connectivity 69
8.1 Zonal Connectivity Structure Definition: ZoneGridConnectivity_t 69
8.2 1-to-1 Interface Connectivity Structure Definition: GridConnectivity1to1_t 70
8.3 1-to-1 Interface Connectivity Examples . 73
8.4 General Interface Connectivity Structure Definition: GridConnectivity_t 75
8.5 Grid Connectivity Property Structure Definition: GridConnectivityProperty_t 78

8.5.1 Periodic Interface Structure Definition: Periodic_t 79
8.5.2 Average Interface Structure Definition: AverageInterface_t 80

8.6 Overset Grid Holes Structure Definition: OversetHoles_t 81

9 Boundary Conditions 83
9.1 Boundary Condition Structures Overview . 84
9.2 Zonal Boundary Condition Structure Definition: ZoneBC_t 85
9.3 Boundary Condition Structure Definition: BC_t . 86
9.4 Boundary Condition Data Set Structure Definition: BCDataSet_t 90
9.5 Boundary Condition Data Structure Definition: BCData_t 92
9.6 Boundary Condition Property Structure Definition: BCProperty_t 93

9.6.1 Wall Function Structure Definition: WallFunction_t 94
9.6.2 Area Structure Definition: Area_t . 95

9.7 Boundary Condition Type Structure Definition: BCType_t 96
9.8 Matching Boundary Condition Data Sets . 99
9.9 Boundary Condition Specification Data . 101
9.10 Boundary Condition Examples . 103

iv

AIAA R-101A-2005

10 Governing Flow Equations 112
10.1 Flow Equation Set Structure Definition: FlowEquationSet_t 112
10.2 Governing Equations Structure Definition: GoverningEquations_t 113
10.3 Thermodynamic Gas Model Structure Definition: GasModel_t 115
10.4 Molecular Viscosity Model Structure Definition: ViscosityModel_t 116
10.5 Thermal Conductivity Model Structure Definition: ThermalConductivityModel_t . . . 118
10.6 Turbulence Structure Definitions . 119

10.6.1 Turbulence Closure Structure Definition: TurbulenceClosure_t 120
10.6.2 Turbulence Model Structure Definition: TurbulenceModel_t 121

10.7 Thermal Relaxation Model Structure Definition: ThermalRelaxationModelType_t . . 124
10.8 Chemical Kinetics Structure Definition: ChemicalKineticsModel_t 125
10.9 Electromagnetics Structure Definitions . 127

10.9.1 Electromagnetics Electric Field Model Structure Definition: EMElectricField-
Model_t . 127

10.9.2 Electromagnetics Magnetic Field Model Structure Definition: EMMagneticField-
Model_t . 128

10.9.3 Electromagnetics Conductivity Model Structure Definition: EMConductivity-
Model_t . 129

10.10Flow Equation Examples . 130

11 Time-Dependent Flow 133
11.1 Iterative Data Structure Definitions . 133

11.1.1 Base Iterative Data Structure Definition: BaseIterativeData_t 133
11.1.2 Zone Iterative Data Structure Definition: ZoneIterativeData_t 134

11.2 Rigid Grid Motion Structure Definition: RigidGridMotion_t 135
11.3 Arbitrary Grid Motion Structure Definition: ArbitraryGridMotion_t 137
11.4 Examples for Time-Dependent Flow . 140

12 Miscellaneous Data Structures 146
12.1 Reference State Structure Definition: ReferenceState_t 146
12.2 Reference State Example . 147
12.3 Convergence History Structure Definition: ConvergenceHistory_t 148
12.4 Discrete Data Structure Definition: DiscreteData_t 150
12.5 Integral Data Structure Definition: IntegralData_t 151
12.6 Family Data Structure Definition: Family_t . 152
12.7 Geometry Reference Structure Definition: GeometryReference_t 153
12.8 Family Boundary Condition Structure Definition: FamilyBC_t 154
12.9 User-Defined Data Structure Definition: UserDefinedData_t 155
12.10Gravity Data Structure Definition: Gravity_t . 156

Annex A. Conventions for Data-Name Identifiers 159
A.1 Coordinate Systems . 159
A.2 Flowfield Solution . 160
A.3 Turbulence Model Solution . 168
A.4 Nondimensional Parameters . 168

v

A.5 Characteristics and Riemann Invariants Based on 1-D Flow 170
A.6 Forces and Moments . 170
A.7 Time-Dependent Flow . 173

Annex B. Structured Two-Zone Flat Plate Example 175
B.1 Overall Layout . 176
B.2 Grid Coordinates . 177
B.3 Flowfield Solution . 178
B.4 Interface Connectivity . 180
B.5 Boundary Conditions . 183
B.6 Global Reference State . 186
B.7 Equation Description . 188

List of Figures

1 Sample Topologically Based CFD Hierarchy . 7
2 Structured-Grid Multizone Interface Types . 25
3 Example Interface for 1-to-1 Connectivity . 74
4 Hierarchy for Boundary Condition Structures . 85
5 Boundary Condition Implementation Levels . 103
6 Two-Zone Flat Plate Test Case . 175

List of Tables

1 Element Types in CGNS . 15
2 Simple Boundary Condition Types . 97
3 Compound Boundary Condition Types . 99
4 Associated Boundary Condition Types and Usage Rules 100
5 Data-Name Identifiers for Perfect Gas . 116
6 Data-Name Identifiers for Molecular Viscosity Models 118
7 Data-Name Identifiers for Thermal Conductivity Models 120
8 Data-Name Identifiers for Turbulence Closure . 121
9 Data-Name Identifiers for Chemical Kinetics Models . 126
10 Defined Names (Symbols) for Commonly Used Mixtures 126
11 Data-Name Identifiers for Electromagnetics Models . 130
12 Data-Name Identifiers for Rigid Grid Motion . 137
13 Data-Name Identifiers for Grid Velocity . 139
14 Data-name Identifiers for Reference State . 147
15 Data-Name Identifiers for Coordinate Systems . 160
16 Data-Name Identifiers for Flow Solution Quantities . 162
17 Data-Name Identifiers for Typical Turbulence Models 168
18 Data-Name Identifiers for Nondimensional Parameters 169
19 Data-Name Identifiers for Characteristics and Riemann Invariants 170
20 Data-Name Identifiers for Forces and Moments . 172
21 Data-Name Identifiers for Time-Dependent Flow . 173

vi

AIAA R-101A-2005

Foreword

This document contains the Standard Interface Data Structures (SIDS) definitions for the CFD
General Notation System (CGNS) project. This project was originally a NASA-funded contract
under the AST program, but control has now been completely transferred to a public forum known
as the CGNS Steering Committee, a sub-committee of the AIAA CFD Committee on Standards.

The purpose of this document is to scope the information that should be communicated between
various CFD application codes; the target is 3–D multizone, compressible Navier-Stokes analysis.
Attention in this document is not focused on I/O routines or formats, but on the precise description
of data that should be present in the I/O of a CFD code or in a CFD database.

This document therefore contains a precise definition of information pertinent to a CGNS database.
Specifically, the following information is addressed:

• grid coordinates and elements

• flow solution data, including nondimensional parameters

• multizone interface connectivity, including abutting and overset

• boundary conditions

• flow equation descriptions

• time-dependent flow

• reference states

• dimensional units and nondimensionalization information associated with data

• convergence history

• association to geometry definition

• topologically based hierarchical structures

This information is encoded into C-like data structures.

This revision “A” of AIAA R-101 replaces in whole AIAA R-101-2002. Changes made to the
document since its last release are outlined in Section 1. At the time of approval, the members of
the CGNS Steering Committee were:

Chris Rumsey, Chairman NASA Langley
Steve Allmaras Boeing Commercial
Juan Alonso Stanford University
Bob Bush Pratt & Whitney
Thierry Chevalier AM-Airbus
Armen D. Darian Pratt & Whitney Rocketdyne
Dan Dominik Boeing Rocketdyne
Steve Feldman CD-ADAPCO

vii

AIAA R-101A-2005

Pankaj Gupta Fluent
Richard Hann ANSYS / CFX
Thomas Hauser Utah State
Steve Legensky Intelligent Light
Todd Michal Boeing Integrated Defense Systems
Marc Poinot ONERA
Greg Power ATA / AEDC
Charles Towne NASA Glenn
Kurt Weber Rolls Royce / Allison
Bruce Wedan Ansys / ICEM CFD Engineering
Nick Wyman Pointwise, Inc.

The above consensus body approved this document in December 2005.

The AIAA Standards Executive Council (Mr. Amr ElSawy, Chairman) accepted the document for
publication in December 2005.

The AIAA Standards Procedures dictates that all approved Standards, Recommended Practices,
and Guides are advisory only. Their use by anyone engaged in industry or trade is entirely volun-
tary. There is no agreement to adhere to any AIAA standards publication and no commitment to
conform to or be guided by standards reports. In formulating, revising, and approving standards
publications, the committees on standards will not consider patents that may apply to the subject
matter. Prospective users of the publications are responsible for protecting themselves against
liability for infringement of patents or copyright or both.

Questions and comments on this document are welcome and should be directed to:

Charlie Towne
MS 86-7
NASA Glenn Research Center
Cleveland, OH 44135-3191
(216) 433-5851
(216) 977-7500 (FAX)
e-mail: towne@nasa.gov

viii

AIAA R-101A-2005

1 Introduction

CGNS (CFD General Notation System) is a collection of conventions, along with software imple-
menting those conventions, for the storage and retrieval of CFD (computational fluid dynamics)
data. The CGNS system is designed to facilitate the exchange of data between sites and appli-
cations, as well as to help stabilize the archiving of fluid dynamic data. In today’s environment,
it is important in many technical arenas to maintain detailed records of scientific computations.
CGNS was designed to help promote a long-lasting and extensible standard for this purpose. Many
companies and institutions choose to adopt the CGNS standard in order to increase productivity by
(1) reducing the time required to translate between data created and used by different applications,
and (2) increasing the quality, longevity, and re-usability of archived data.

The CGNS standard is a conceptual entity established by the documentation. The CGNS software
is a physical product supplied to enable writing and reading data according to this standard. All
CGNS software is completely free and open to anyone. By using the supplied software, it is relatively
easy for users to adhere to most of the standard described in detail in this document.

The CGNS project originated during 1994 through a series of meetings that addressed improved
transfer of NASA technology to industry. A principal impediment in this process was the disparity
in I/O formats employed by various flow codes, grid generators, and other utilities, and CGNS
was conceived as a means to promote “plug-and-play” CFD. Agreement was reached to develop
CGNS at Boeing, under NASA Contract NAS1-20267, with active participation by a team of CFD
researchers from NASA’s Langley, Lewis (now Glenn), and Ames Research Centers, McDonnell
Douglas Corporation (now part of Boeing), and Boeing Commercial Airplane Group. This team,
which was joined by ICEM CFD Engineering Corporation of Berkeley, California in 1997, undertook
the core of the development. However, in the spirit of creating a completely open and broadly
accepted standard, all interested parties were encouraged to participate; the US Air Force and
Arnold Engineering Development Center were notably present. From the beginning, the purpose
was to develop a system that could be distributed freely, including all documentation, software and
source code. This goal has now been fully realized; further, control of CGNS has been completely
transferred to a public forum known as the CGNS Steering Committee.

The principal target is the data normally associated with compressible viscous flow (i.e., the Navier-
Stokes equations), but the standard is also applicable to subclasses such as Euler and potential flows.
The initial release addressed multi-zone grids, flow fields, boundary conditions, and zone-to-zone
connection information, as well as a number of auxiliary items, such as non-dimensionalization,
reference states, and equation set specifications. Extensions incorporated since then include un-
structured mesh, connections to geometry definition, time-dependent flow, and support for multiple
species and chemistry.

It is worth noting that extensibility is a fundamental design characteristic of the system, which
in principal could be used for other disciplines of computational field physics, such as acoustics or
electromagnetics, given the willingness of the cognizant scientific community to define the conven-
tions.

The standard format, or paper convention, part of CGNS consists of two fundamental pieces. The
first, known as the Standard Interface Data Structures (SIDS), describes in detail the intellectual
content of the information to be stored. It defines, for example, the precise meaning of a “boundary

1

AIAA R-101A-2005

condition”. The second, known as the File Mapping (either SIDS to ADF, or SIDS to HDF,
depending on the underlying database manager being used), defines the exact location in a CGNS
file where the data is to be stored.

The implementation, or software, part of CGNS likewise consists of two separate entities. CGNS
files are read and written by a stand-alone database manager, either ADF (Advanced Data Format)
or HDF (Hierarchical Data Format). The database manager implements a tree-like data structure,
as a binary file. Since the format of this file is completely controlled by the database manager, and
since ADF and HDF are both written in ANSI C (Fortran wrappers are provided), these files and
the database manager itself are portable to any environment which supports ANSI C. Both ADF
and HDF are available separately and constitute useful tools for the storage of large quantities of
scientific data.

The underlying database manager, however, implements no knowledge of CFD or of the File Map-
ping. To simplify access to CGNS files, a second layer of software known as the Mid-Level Library
is provided. This layer is in effect an API, or Application Programming Interface for CFD. The API
incorporates knowledge of the CFD data structures, their meaning and their location in the file,
enabling applications such as flow codes and grid generators to access the data in familiar terms.
The API is therefore the piece of the CGNS system most visible to applications developers. Like
the ADF and HDF database managers, the Mid-Level Library is written in ANSI C; all public API
routines have Fortran counterparts.

This document presents the formal definition of the Standard Interface Data Structures (SIDS).
Section 2 presents the major design philosophies used to develop the CGNS database and the
encoding of this database into the SIDS; this section also provides an overview of the database
hierarchy. Section 3 describes the C-like nomenclature conventions used to define the SIDS. This
section also gives the conventions for structured grid indexing and unstructured element numbering,
and the nomenclature for multizone interfaces. Low-level building-block structures are defined in
Section 4; these structures are used to define all higher-level structures. Structures for defining data
arrays, including dimensional-units and nondimensional information, are presented in Section 5.
The top levels of the CGNS hierarchy are next defined in Section 6. The following sections then
fill out the remainder of the hierarchy: Section 7 defines the grid-coordinate, elements, and flow-
solution structures; Section 8 defines the multizone interface connectivity structures; Section 9
defines boundary-condition structures; Section 10 defines structures for describing governing flow
equations; Section 11 defines structures related to time-dependent flows; and Section 12 contains
miscellaneous structures. Two appendices complete the document. Annex A provides naming
conventions for data contained within the CGNS database, and Annex B contains a complete SIDS
description of a structured-grid two-zone test case.

1.1 Major Differences from Previous CGNS Versions

The following items represent noteworthy alterations and additions to the SIDS starting with the
August 1999 draft document. (Note that some of these changes — notably those for unstructured
zones, family, and geometry reference — have existed previously in separate documents, but are
now being merged officially into the SIDS; the data structures themselves are not “new.”)

2

AIAA R-101A-2005

1.1.1 Version 2.0, Beta 1

The following changes were made for Version 2.0, Beta 1.

• The capability for recording unstructured zones has been added to the SIDS. (These changes
occur throughout the document, although some specific items are listed below.)

• The values UserDefined and Null are now allowed for all enumeration types (throughout
document).

• The following nodes are now defined (some of these also include additional new children sub-
nodes): Family_t (Section 12.6), Elements_t (Section 7.3), ZoneType_t (Section 6.3), Fam-
ilyName_t (Section 6.3), GeometryReference_t (Section 12.7), FamilyBC_t (Section 12.8).

• Under CGNSBase_t, the IndexDimension is no longer recorded; it has been replaced by
CellDimension and PhysicalDimension (Section 6.2).

• Under Zone_t, the optional parameter VertexSizeBoundary has been added for unstructured
zones (Section 6.3).

• The method for general connectivity (GridConnectivity_t) has been altered. It now requires
the use of either (a) PointListDonor (an integer, for Abutting1to1 only) or (b) CellList-
Donor (an integer) plus InterpolantsDonor (a real) (Section 8.4).

• The GridLocation_t parameter has been moved up one level (from BCDataSet_t to BC_t).
Thus, for example, if the boundary conditions are defined at vertices (the default), then any
associated dataset information must also be specified at vertices (Section 9.3 and Section 9.4).

• The data-name identifier LengthReference has been added (Section 12.1 and Annex A.2).

• The νt parameter has been renamed ViscosityEddyKinematic, and a new parameter Vis-
cosityEddy, representing µt, has been defined (Annex A.2).

1.1.2 Version 2.0, Beta 2

The following changes were made for Version 2.0, Beta 2.

• The following data structures related to time-dependent flow have been added: BaseIter-
ativeData_t (Section 11.1.1), ZoneIterativeData_t (Section 11.1.2), RigidGridMotion_t
(Section 11.2), ArbitraryGridMotion_t (Section 11.3).

1.1.3 Version 2.1, Beta 1

The following changes were made for Version 2.1, Beta 1.

• A node type UserDefinedData_t (Section 12.9) is added for the storage of arbitrary user
defined data in Descriptor_t and DataArray_t children without the restrictions or implicit
meanings imposed on these node types at other node locations.

3

AIAA R-101A-2005

• Support for multi-species flows and chemistry has been added. New gas models have been
added to the GasModelType_t enumeration (Section 10.3), and ThermalRelaxationModel_t
and ChemicalKineticsModel_t data structures have been added for describing the thermal
relaxation and chemical kinetics models (Section 10.7 and Section 10.8). Additional flow
solution data-name identifiers are included (Annex A.2).

1.1.4 Version 2.2, Beta 1

The following changes were made for Version 2.2, Beta 1.

• Axisymmetry_t and RotatingCoordinates_t nodes have been added, allowing the recording
of data relevant to axisymmetric flows and rotating coordinates (Section 7.5 and Section 7.6).

• A Gravity_t node has been added for storage of the gravitational vector (Section 12.10).

• A GridConnectivityProperty_t node has been added, allowing the recording of special
properties associated with particular connectivity patches, such as periodic interfaces, or
interfaces where the data is to be averaged in some way prior to passing it to a neighboring
interface (Section 8.5).

• A BCProperty_t node has been added, allowing the recording of special properties asso-
ciated with particular boundary condition patches, such as wall function or bleed regions
(Section 9.6).

• Additional flow solution data-name identifiers are included for variables in rotating coordinate
systems (Annex A.2).

1.1.5 Version 2.3

The following changes were made for Version 2.3.

• ElementRange and ElementList have been added to the BC_t data structure. ElementRange
or ElementList may now be used to define a boundary condition patch by specifying face
indices, instead of using PointRange or PointList with GridLocation set to FaceCenter.
The use of PointRange or PointList to define a boundary condition patch hasn’t changed.
They may be used to define a boundary condition patch by specifying either vertex or face
indices.

When PointRange or PointList is used, the choice between vertex or face indices is de-
termined by the value of GridLocation_t. When ElementRange or ElementList is used,
GridLocation_t is ignored. (Section 9.3).

1.1.6 Version 2.4

The following changes were made for Version 2.4.

4

AIAA R-101A-2005

• GridLocation_t, PointRange, and PointList have been added to the BCDataSet_t data
structure, allowing boundary conditions to be specified at locations different from those used
to defined the BC patch. (E.g., a BC patch may be defined using vertices, with boundary
conditions applied at face centers.) (Section 9.4).

• Data structures have been added to FlowEquationSet_t for describing the electric field,
magnetic field, and conductivity models used for electromagnetic flows. Corresponding rec-
ommended data-name identifiers have also been added. (Section 10.1 and Section 10.9).

• RotatingCoordinates_t has been added to the Family_t data structure. (Section 12.6).

• A BCDataSet_t list has been added to the FamilyBC_t data structure, allowing specification
of boundary condition data arrays for CFD families. (Section 12.8).

• GridLocation_t, PointRange, PointList, FamilyName_t, UserDefinedData_t, and Ordi-
nal have been added to the UserDefinedData_t data structure. (Section 12.9).

• The DimensionalUnits_t and DimensionalExponents_t structures have been expanded to
include units for electric current, substance amount, and luminous intensity. (Section 4.3).

5

AIAA R-101A-2005

2 Design Philosophy of Standard Interface Data Structures

The major design goal of the SIDS is a comprehensive and unambiguous description of the ‘intel-
lectual content’ of information that must be passed from code to code in a multizone Navier-Stokes
analysis system. This information includes grids, flow solutions, multizone interface connectivity,
boundary conditions, reference states and dimensional units or normalization associated with data.

Implications of CFD Data Sets

The goal is description of the data sets typical of CFD analysis, which tend to contain a small
number of extremely large data arrays. This has a number of implications for both the design of
the SIDS and the ultimate physical files where the data resides. The first is that any I/O system
built for CFD analysis must be designed to efficiently store and process large data arrays. This is
reflected in the SIDS, which includes provisions for describing large data arrays.

The second implication is that the nature of the data sets allows for thorough description of the
data with relatively little storage overhead and performance penalty. For example, the flow solution
of a CFD analysis may contain several millions of quantities. Therefore, with little penalty it is
possible to include information describing the flow variables stored, their location in the grid, and
dimensional units or nondimensionalization associated with the data. The SIDS take advantage of
this situation and includes an extensive description of the information stored in the database.

The third implication of CFD data sets is that files containing a CFD database are almost always
required to be binary – ASCII storage of CFD data involves excessive storage and performance
penalties. This means the files are not readable by humans and the information contained in them
is not directly modifiable by text editors and such. This is reflected in the syntax of the SIDS,
which tends to be verbose and thorough; whereas, directly modifiable ASCII file formats would
tend to foster a more brief syntax.

It is important to note that the description of information by the SIDS is independent of physical
file formats. However, it is targeted towards implementation using the ADF Core library. Some of
the language components used to define the SIDS are meant to directly map into elements of an
ADF node.

Topologically Based Hierarchical Database

An early decision in the CGNS project was that any new CFD I/O standard should include a
hierarchical database, such as a tree or directed graph. The SIDS describe a hierarchical database,
precisely defining both the data and their hierarchical relationships.

There are two major alternatives to organizing a CFD hierarchy: topologically based and data-type
based. In a topologically based graph, overall organization is by zones; information pertaining to a
particular zone, including its grid coordinates or flow solution, hangs off the zone. In a data-type
based graph, organization is by related data. For example, there would be two nodes at the same
level, one for grid coordinates and another for the flow solution. Hanging off each of these nodes
would be separate lists of the zones.

6

AIAA R-101A-2005

CGNS databaser������������������r
Reference state

"
"

"
"
"
"
""r
rZone 1
!!!!!!!!!!!r

rGrid coordinates

x y z

@
@
@
@@

�
�
�
��r r r

aaaaaaaaaaar
rFlow solution

ρ ρu ρv ρw ρe0

@
@
@
@@

�
�

�
��

HHH
HHH

HHH

���
���

���r r r r r

r
r

Multizone interface
connectivity

��@@

`````````````````````̀ r
rBoundary conditions

��@@

B
B
B
BBr
rZone 2

!!! aaa
```̀

XXXXXXXXXXXXXXXXXXr
rZone N

!!! aaa
```̀

· · ·

Figure 1: Sample Topologically Based CFD Hierarchy

The hierarchy described in this document is topologically based; a simplified illustration of the
database hierarchy is shown in Figure 1. Hanging off the root ‘node’ of the database is a node
containing global reference-state information, such as freestream conditions, and a list of nodes for
each zone. The figure shows the nodes that hang off the first zone; similar nodes would hang off
of each zone in the database. Nodes containing the physical-coordinate data arrays (x, y and z)
for the first zone are shown hanging off the ‘grid coordinates’ node. Likewise, nodes containing the
first zone’s flow-solution data arrays hang off the ‘flow solution’ node. The figure also depicts nodes
containing multizone interface connectivity and boundary condition information for the first zone;
subnodes hanging off each of these are not pictured.

Additional Design Objectives

The data structures comprising the SIDS are the result of several additional design objectives:

One objective is to minimize duplication of data within the hierarchy. Many parameters, such as the
grid size of a zone, are defined in only one location. This avoids implementation problems arising
from data duplication within the physical file containing the database; these problems include
simultaneous update of all copies and error checking when two copies of a data quantity are found
to be different. One consequence of minimizing data duplication is that information at lower levels
of the hierarchy may not be completely decipherable without access to information at higher levels.
For example, the grid size is defined in the zone structure (see Section 6.3), but this parameter is
needed in several substructures to define the size of grid and flow-solution data arrays. Therefore,
these substructures are not autonomous and deciphering information within them requires access to
information contained in the zone structure itself. The SIDS must reflect this cascade of information
within the database.

Another objective is elimination of nonsensical descriptions of the data. The SIDS have been

7



AIAA R-101A-2005

carefully developed to avoid data qualifiers and other optional descriptive information that could be
inconsistent. This has led to the use of specialized structures for certain CFD-related information.
One example is a single-purpose structure for defining physical grid coordinates of a zone. It is
possible to define the grid coordinates, flow solution and any other field quantities within a zone by a
generic discrete-data structure. However, this requires the generic structure to include information
defining the grid location of the data (e.g. the data is located at vertices or cell centers). Using the
generic structure to describe the grid coordinates leads to a possible inconsistency. By definition the
physical coordinates that define the grid are located at vertices, and including an optional qualifier
that states otherwise makes no sense.

A final objective is to allow documentation inclusion throughout the database. The SIDS contain
a uniform documentation mechanism for all major structures in the hierarchy. However, this
document establishes no conventions for using the documentation mechanism.

8



AIAA R-101A-2005

3 Conventions

3.1 Data Structure Notation Conventions

The intellectual content of the CGNS database is defined in terms of C-like notation including
typedefs and structures. The database is made up of entities, and each entity has a type associated
with it. Entities include such things as the dimensionality of the grid, an array of grid coordinates,
or a zone which contains all the data associated with a given region. Entities are defined in terms
of types, where a type can be an integer or a collection of elements (a structure) or a hierarchy of
structures or other similar constructs.

The terminology ‘instance of an entity’ is used to refer to an entity that has been assigned a value
or whose elements have been assigned values. The terminology ‘specific instance of a structure’ is
also used in the following sections. It is short for an instance of an entity whose type is a structure.

Names of entities and types are constructed using conventions typical of Mathematica.1 Names or
identifiers contain no spaces and capitalization is used to distinguish individual words making up
a name; names are case-sensitive. The characters ‘.’ and ‘/’ should be avoided in names as these
have special meaning when referencing elements of a structure entity.

The following notational conventions are employed:

! comment to end of line
_t suffix used for naming a type
; end of a definition, declaration, assignment or entity instance
= assignment (takes on the value of)
:= indicates a type definition (typedef)
[ ] delimiters of an array
{ } delimiters of a structure definition
{{ }} delimiters of an instance of a structure entity
< > delimiters of a structure parameter list
int integer
real floating-point number
char character
bit bit
Enumeration( ) indicates an enumeration type
Data( ) indicates an array of data, which may be multidimensional
List( ) indicates a list of entities
Identifier( ) indicates an entity identifier
LogicalLink( ) indicates a logical link
/ delimiter for element of a structure entity
../ delimiter for parent of a structure entity
(r) designation for a required structure element
(o) designation for an optional structure element
(o/d) designation for an optional structure element with default if absent

1Mathematica 3.0, Wolfram Research, Inc., Champaign, IL (1996)

9



AIAA R-101A-2005

An enumeration type is a set of values identified by names; names of values within a given enumer-
ation declaration must be unique. An example of an enumeration type is the following:

Enumeration( Dog, Cat, Bird, Frog )

This defines an enumeration type which contains four values.

Data() identifies an array of given dimensionality and size in each dimension, whose elements are
all of a given data type. It is written as,

Data( DataType, Dimension, DimensionValues[] ) ;

Dimension is an integer, and DimensionValues[] is an array of integers of size Dimension. Dimen-
sion and DimensionValues[] specify the dimensionality of the array and its size in each dimension.
DataType specifies the data type of the array’s elements; it may consist of one of the following:
int, real, char or bit. For multidimensional arrays, FORTRAN indexing conventions are used.
Data() is formulated to map directly onto the data section of an ADF node.

A typedef establishes a new type and defines it in terms of previously defined types. Types are
identified by the suffix ‘_t’, and the symbol ‘:=’ is used to establish a type definition (or typedef).
For example, the above enumeration example can be used in a typedef:

Pet_t := Enumeration( Dog, Cat, Bird, Frog ) ;

This defines a new type Pet_t, which can then be used to declare a new entity, such as,

Pet_t MyFavoritePet ;

By the above typedef and declaration, MyFavoritePet is an entity of type Pet_t and can have the
values Dog, Cat, Bird or Frog. A specific instance of MyFavoritePet is setting it equal to one of
these values (e.g. MyFavoritePet = Bird).

A structure is a type that can contain any number of elements, including elements that are also
structures. An example of a structure type definition is:

Sample_t :=
{
int Dimension ; (r)

real[4] Vector ; (o)

Pet_t ObnoxiousPet ; (o)
} ;

where Sample_t is the type of the structure. This structure contains three elements, Dimension,
Vector and ObnoxiousPet, whose types are int, real[4] and Pet_t, respectively. The type int
specifies an integer, and real[4] specifies an array of reals that is one-dimensional with a length
of four. The ‘(r)’ and ‘(o)’ notation in the right margin is explained below. Given the definition
of Sample_t, entities of this type can then be declared (e.g. Sample_t Sample1;). An example of
an instance of a structure entity is given by,

10



AIAA R-101A-2005

Sample_t Sample1 =
{{
Dimension = 3 ;
Vector = [1.0, 3.45, 2.1, 5.4] ;
ObnoxiousPet = Dog ;
}} ;

Note the different functions played by single braces ‘{’ and double braces ‘{{’. The first is used
to delimit the definition of a structure type; the second is used to delimit a specific instance of a
structure entity.

Some structure type definitions contain arbitrarily long lists of other structures or types. These
lists will be identified by the notation,

List( Sample_t Sample1 ... SampleN ) ;

where Sample1 ... SampleN is the list of structure names or identifiers, each of which has the type
Sample_t. Within each list, the individual structure names are user-defined.

In the CGNS database it is sometimes necessary to reference the name or identifier of a structure
entity. References to entities are denoted by Identifier(), whose single argument is a structure
type. For example,

Identifier(Sample_t) SampleName ;

declares an entity, SampleName, whose value is the identifier of a structure entity of type Sample_t.
Given this declaration, SampleName could be assigned the value Sample1 (i.e. SampleName =
Sample1).

It is sometimes convenient to directly identify an element of a specific structure entity. It is also
convenient to indicate that two entities with different names are actually the same entity. We
borrow UNIX conventions to indicate both these features, and make the analogy that a structure
entity is a UNIX directory and its elements are UNIX files. An element of an entity is designated
by ‘/’; an example is Sample1/Vector). The structure entity that a given element belongs to is
designated ‘../’ A UNIX-like logical link that specifies the sameness of two apparently different
entities is identified by LogicalLink(); it has one argument. An example of a logical link is as
follows: Suppose a specific instance of a structure entity contains two elements that are of type
Sample_t; call them SampleA and SampleB. The statement that SampleB is actually the same entity
as SampleA is,

SampleB = LogicalLink(../SampleA) ;

The argument of LogicalLink() is the UNIX-like ‘path name’ of the entity with which the link is
made. In this document, LogicalLink() and the direct specification of a structure element via ‘/’
and ‘../’ are actually seldom used. These language elements are never used in the actual definition
of a structure type.

11



AIAA R-101A-2005

Structure type definitions include three additional syntactic/semantic notions. These are parame-
terized structures, structure-related functions, and the identification of required and optional fields
within a structure.

As previously stated, one of our design objectives is to minimize duplication of information within
the CGNS database. To meet this objective, information is often stored in only one location of the
hierarchy; however, that information is typically used in other parts of the hierarchy. A consequence
of this is that it may not be possible to decipher all the information associated with a given entity
in the hierarchy without knowledge of data contained in higher level entities. For example, the
grid size of a zone is stored in one location (in Zone_t, see Section 6.3), but is needed in many
substructures to define the size of grid and solution-data arrays.

This organization of information must be reflected in the language used to describe the database.
First, parameterized structures are introduced to formalize the notion that information must be
passed down the hierarchy. A given structure type is defined in terms of a list of parameters that
precisely specify what information must be obtained from the structure’s parent. These structure-
defining parameters play a similar role to subroutine parameters in C or FORTRAN and are used to
define fields within the structure; they are also passed onto substructures. Parameterized structures
are also loosely tied to templates in C++.

Parameterized structures are identified by the delimiters < > enclosing the list of parameters. Each
structure parameter in a structure-type definition consists of a type and an identifier. Examples of
parameterized structure type definitions are:

NewSample_t< int Dimension, int Fred > :=
{
int[Dimension] Vector ; (o)

Pet_t ObnoxiousPet ; (o)

Stuff_t<Fred> Thingy ; (o)
} ;

Stuff_t< int George > :=
{
real[George] IrrelevantStuff ; (r)
} ;

NewSample_t and Stuff_t are parameterized structure types. Dimension and Fred are the struc-
ture parameters of NewSample_t. George is the structure parameter of Stuff_t. All structure
parameters in this example are of type int. Thingy is a structure entity of type Stuff_t; it uses
the parameter Fred to complete its declaration. Note the use of George and Fred in the above ex-
ample. George is a parameter in the definition of Stuff_t; Fred is an argument in the declaration
of an entity of type Stuff_t. This mimics the use of parameters in function definitions in C.

A second language feature required to cope with the cascade of information within the hierarchy
is structure-related functions. For example, the size of an array within a given structure may be a
function of one or more of the structure-defining parameters, or the array size may be a function of

12



AIAA R-101A-2005

an optional field within the structure. No new syntax is provided to incorporate structure-related
functions; they are instead described in terms of their return values, dependencies, and functionality.

An additional notation used in structure typedefs is that each element or field within a structure
definition is identified as required, optional, or optional with a default if absent; these are designated
by ‘(r)’, ‘(o)’, and ‘(o/d)’, respectively, in the right margin of the structure definition. These
designations are included to assist in implementation of the data structures into an actual database
and can be used to guide mapping of data as well as error checking. ‘Required’ fields are those
essential to the interpretation of the information contained within the data structure. ‘Optional’
fields are those that are not necessary but potentially useful, such as documentation. ‘Defaulted-
optional’ fields are those that take on a known default if absent from the database.

In the example of Sample_t above, only the element Dimension is required. Both elements Vector
and ObnoxiousPet are optional. This means that in any specific instance of the structure, only
Dimension must be present. An alternative instance of the entity Sample1 shown above is the
following:

Sample_t Sample1 =
{{
Dimension = 4 ;
}} ;

None of the entities and types defined in the above examples are actually used in the definition of
the SIDS.

As a final note, the reader should be aware that the SIDS is a conceptual description of the form
of the data. The actual location of data in the file is determined by the file mapping, defined by
the appropriate File Mapping Manual.

3.2 Structured Grid Notation and Indexing Conventions

A grid is defined by its vertices. In a 3-D structured grid, the volume is the ensemble of cells,
where each cell is the hexahedron region defined by eight nearest neighbor vertices. Each cell is
bounded by six faces, where each face is the quadrilateral made up of four vertices. An edge links
two nearest-neighbor vertices; a face is bounded by four edges.

In a 2-D structured grid, the notation is more ambiguous. Typically, the quadrilateral area com-
posed of four nearest-neighbor vertices is referred to as a cell. The sides of each cell, the line linking
two vertices, is either a face or an edge. In a 1-D grid, the line connecting two vertices is a cell.

A structured multizone grid is composed of multiple regions called zones, where each zone includes
all the vertices, cells, faces, and edges that constitute the grid in that region.

Indices describing a 3-D grid are ordered (i, j, k); (i, j) is used for 2-D and (i) for 1-D.

Cell centers, face centers, and edge centers are indexed by the minimum i, j, and k indices of the
connecting vertices. For example, a 2-D cell center (or face center on a 3-D grid) would have the
following convention:

13



AIAA R-101A-2005

• • •

• • •

(i, j) (i+ 1, j)

(i, j) (i+ 1, j) (i+ 2, j)

(i, j + 1) (i+ 1, j + 1) (i+ 2, j + 1)

In addition, the default beginning vertex for the grid in a given zone is (1, 1, 1); this means the
default beginning cell center of the grid in that zone is also (1, 1, 1).

A zone may contain grid-coordinate or flow-solution data defined at a set of points outside the zone
itself. These are referred to as ‘rind’ or ghost points and may be associated with fictitious vertices
or cell centers. They are distinguished from the vertices and cells making up the grid within the
zone (including its boundary vertices), which are referred to as ‘core’ points. The following is a
2-D zone with a single row of ‘rind’ vertices at the minimum and maximum i-faces. The grid size
(i.e. the number of ‘core’ vertices in each direction) is 5×4. ‘Core’ vertices are designated by ‘•’,
and ‘rind’ vertices by ‘×’. Default indexing is also shown for the vertices.

• • • • •
• • • • •
• • • • •
• • • • •

×
×
×
×

×
×
×
×

(0, 1) (1, 1) (5, 1) (6, 1)

(5, 4)

For a zone, the minimum faces in each coordinate direction are denoted i-min, j-min and k-min;
the maximum faces are denoted i-max, j-max and k-max. These are the minimum and maximum
‘core’ faces. For example, i-min is the face or grid plane whose core vertices have minimum i index
(which if using default indexing is 1).

3.3 Unstructured Grid Element Numbering Conventions

The major difference in the way structured and unstructured grids are recorded is the element defi-
nition. In a structured grid, the elements can always be recomputed easily using the computational
coordinates, and therefore they are usually not written in the data file. For an unstructured grid,
the element connectivity cannot be easily built, so this additional information is generally added
to the data file. The element information typically includes the element type or shape, and the list
of nodes for each element.

In an unstructured zone, the nodes are ordered from 1 to N , where N is the number of nodes in
the zone. An element is defined as a group of one or more nodes, where each node is represented
by its index. The elements are indexed from 1 to M within a zone, where M is the total number
of elements defined for the zone.

CGNS supports eight element shapes — points, lines, triangles, quadrangles, tetrahedra, penta-
hedra, pyramids, and hexahedra. Elements describing a volume are referred to as 3-D elements.

14



AIAA R-101A-2005

Those defining a surface are 2-D elements. Line and point elements are called 1-D and 0-D elements,
respectively.

In a 3-D unstructured mesh, the cells are defined using 3-D elements, while the boundary patches
may be described using 2-D elements. The complete element definition may include more than just
the cells.

Each element shape may have a different number of nodes, depending on whether linear or quadratic
interpolation is used. Therefore the name of each type of element is composed of two parts; the first
part identifies the element shape, and the second part the number of nodes. Table 1 summarizes
the element types supported in CGNS.

Table 1: Element Types in CGNS

Dimensionality Linear Quadratic
of the Element

Shape
Interpolation Interpolation

0-D Point NODE NODE
1-D Line BAR_2 BAR_3
2-D Triangle TRI_3 TRI_6

Quadrangle QUAD_4 QUAD_8, QUAD_9
3-D Tetrahedron TETRA_4 TETRA_10

Pyramid PYRA_5 PYRA_14
Pentahedron PENTA_6 PENTA_15, PENTA_18
Hexahedron HEXA_8 HEXA_20, HEXA_27

Any element type not supported by CGNS can be recorded using the CGNS generic element type
NGON_n. See Section 7.3 for more detail.

The ordering of the nodes within an element is important. Since the nodes in each element type
could be ordered in multiple ways, it is necessary to define numbering conventions. The following
sections describe the element numbering conventions used in CGNS.

3.3.1 1-D (Line) Elements

1-D elements represent geometrically a line (or bar). The linear form, BAR_2, is composed of two
nodes at each extremity of the line. The quadratic form, BAR_3, has an additional node located at
the middle of the line.

BAR_2

v1 v2

BAR_3

v1 v2v
3

Face Definition

Oriented edge Corner nodes Mid-node
E1 N1,N2 N3

15



AIAA R-101A-2005

3.3.2 2-D (Surface) Elements

2-D elements represent a surface in either 2-D or 3-D space. Note that in physical space, the surface
need not be planar, but may be curved. In a 2-D mesh the elements represent the cells themselves;
in a 3-D mesh they represent faces. CGNS supports two shapes of 2-D elements — triangles and
quadrangles.

The normal vector of a 2-D element is computed using the cross product of a vector from the first
to second node, with a vector from the first to third node. The direction of the normal is such that
the three vectors (i.e., (−→N2−−→N1), (−→N3−−→N1), and −→N ) form a right-handed triad.

−→
N = (−→N2−−→N1)× (−→N3−−→N1)

In a 2-D mesh, all elements must be oriented the same way; i.e., all normals must point toward the
same side of the mesh.

3.3.2.1 Triangular Elements

Two types of triangular elements are supported in CGNS, TRI_3 and TRI_6. TRI_3 elements are
composed of three nodes located at the three geometric corners of the triangle. TRI_6 elements
have three additional nodes located at the middles of the three edges.

TRI_3

�
�
�
�
�
�
�
�Z

Z
Z
Z
Z
Z
Z
Z

v
1

v2v3
6
−→
N TRI_6

�
�
�
�
�
�
�
�Z

Z
Z
Z
Z
Z
Z
Z

v
1

v2v3

v
4

v5

v
6

Edge Definition

Oriented Corner Mid-
edges nodes node
E1 N1,N2 N4
E2 N2,N3 N5
E3 N3,N1 N6

Face Definition

Face Corner nodes Mid-edge nodes Oriented edges
F1 N1,N2,N3 N4,N5,N6 E1,E2,E3

Notes

N1,...,N6 Grid point identification number. Integer ≥ 0 or blank, and N1 6= N2 6= . . . 6=
N6. Grid points N1, N2, and N3 are in consecutive order about the triangle.

E1,E2,E3 Edge identification number.

F1 Face identification number.

16



AIAA R-101A-2005

3.3.2.2 Quadrilateral Elements

CGNS supports three types of quadrilateral elements, QUAD_4, QUAD_8, and QUAD_9. QUAD_4 el-
ements are composed of four nodes located at the four geometric corners of the quadrangle. In
addition, QUAD_8 and QUAD_9 elements have four mid-edge nodes, and QUAD_9 adds a mid-face
node.

QUAD_4
























 v

1

v2v3

v
4

6
−→
N QUAD_8
























 v

1

v2v3

v
4

v5

v6
v7

v
8

QUAD_9
























 v

1

v2v3

v
4

v5

v6
v7

v
8

v
9

Edge Definition

Oriented Corner Mid-
edges nodes node
E1 N1,N2 N5
E2 N2,N3 N6
E3 N3,N4 N7
E4 N4,N1 N8

Face Definition

Face Corner nodes Mid-edge nodes Mid-face node Oriented edges
F1 N1,N2,N3,N4 N5,N6,N7,N8 N9 E1,E2,E3,E4

Notes

N1,...,N9 Grid point identification number. Integer ≥ 0 or blank, and N1 6= N2 6= . . . 6=
N9. Grid points N1. . . N4 are in consecutive order about the quadrangle.

E1,...,E4 Edge identification number.

F1 Face identification number.

3.3.3 3-D (Volume) Elements

3-D elements represent a volume in 3-D space, and constitute the cells of a 3-D mesh. CGNS
supports four different shapes of 3-D elements — tetrahedra, pyramids, pentahedra, and hexahedra.

3.3.3.1 Tetrahedral Elements

CGNS supports two types of tetrahedral elements, TETRA_4 and TETRA_10. TETRA_4 elements are
composed of four nodes located at the four geometric corners of the tetrahedron. TETRA_10 elements
have six additional nodes, at the middle of each of the six edges.

17



AIAA R-101A-2005

TETRA_4

Q
Q
Q
Q
Q
Q
Q
Q
Q�
�
�
�
�
�
�
l
l
l
l
l
l
l
l�

�
�
�
�
�
�
�v1

v
2

v3

v4 TETRA_10

Q
Q
Q
Q
Q
Q
Q
Q
Q�
�
�
�
�
�
�
l
l
l
l
l
l
l
l�

�
�
�
�
�
�
�v1

v
2

v3

v4

v
5

v
6

v7

v8

v9

v10

Edge Definition

Oriented Corner Mid-
edges nodes node
E1 N1,N2 N5
E2 N2,N3 N6
E3 N3,N1 N7
E4 N1,N4 N8
E5 N2,N4 N9
E6 N3,N4 N10

Face Definition

Face Corner nodes Mid-edge nodes Oriented edges
F1 N1,N3,N2 N7,N6, N5 -E3,-E2,-E1
F2 N1,N2,N4 N5,N9, N8 E1, E5,-E4
F3 N2,N3,N4 N6,N10,N9 E2, E6,-E5
F4 N3,N1,N4 N7,N8, N10 E3, E4,-E6

Notes

N1,...,N10 Grid point identification number. Integer ≥ 0 or blank, and N1 6= N2 6= . . . 6=
N10. Grid points N1. . . N3 are in consecutive order about one trilateral face. The
cross product of a vector going from N1 to N2, with a vector going from N1 to
N3, must result in a vector oriented from face F1 toward N4.

E1,...,E6 Edge identification number. The edges are oriented from the first to the second
node. A negative edge (e.g., -E1) means that the edge is used in its reverse
direction.

F1,...,F4 Face identification number. The faces are oriented so that the cross product of
a vector from its first to second node, with a vector from its first to third node,
is oriented outward.

3.3.3.2 Pyramid Elements

CGNS supports two types of pyramid elements, PYRA_5 and PYRA_14. PYRA_5 elements are com-
posed of five nodes located at the five geometric corners of the pyramid. PYRA_14 elements have
nine additional nodes, eight located at the middle of each of the eight edges, and one at the cell
center.

18



AIAA R-101A-2005

PYRA_5

,
,
,
,
,
,
,
,
,
,
,
T
T
T
T
T
T
T(((((((

((((B
B
B
B
B
B
B
B
B
B
B
B
B
B
B�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�v

1

v
2

v3v
4

v5 PYRA_14

,
,
,
,
,
,
,
,
,
,
,
T
T
T
T
T
T
T(((((((

((((B
B
B
B
B
B
B
B
B
B
B
B
B
B
B�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�v

1

v
2

v3v
4

v5

v
6

v
7

v8

v
9

v10 v11

v
12v13

v
14

Edge Definition

Oriented Corner Mid-
edges nodes node
E1 N1,N2 N6
E2 N2,N3 N7
E3 N3,N4 N8
E4 N4,N1 N9
E5 N1,N5 N10
E6 N2,N5 N11
E7 N3,N5 N12
E8 N4,N5 N13

Face Definition

Face Corner nodes Mid-edge nodes Oriented edges
F1 N1,N4,N3,N2 N9,N8, N7, N6 -E4,-E3,-E2,-E1
F2 N1,N2,N5 N6,N11,N10 E1, E6,-E5
F3 N2,N3,N5 N7,N12,N11 E2, E7,-E6
F4 N3,N4,N5 N8,N13,N12 E3, E8,-E7
F5 N4,N1,N5 N9,N10,N13 E4, E5,-E8

Notes

N1,...,N14 Grid point identification number. Integer ≥ 0 or blank, and N1 6= N2 6= . . . 6=
N14. Grid points N1. . . N4 are in consecutive order about the quadrilateral face.
The cross product of a vector going from N1 to N2, with a vector going from N1
to N3, must result in a vector oriented from face F1 toward N5. N14 is located
at the cell center.

E1,...,E8 Edge identification number. The edges are oriented from the first to the second
node. A negative edge (e.g., -E1) means that the edge is used in its reverse
direction.

F1,...,F5 Face identification number. The faces are oriented so that the cross product of
a vector from its first to second node, with a vector from its first to third node,
is oriented outward.

19



AIAA R-101A-2005

3.3.3.3 Pentahedral Elements

CGNS supports three types of pentahedral elements, PENTA_6, PENTA_15, and PENTA_18. PENTA_6
elements are composed of six nodes located at the six geometric corners of the pentahedron. In
addition, PENTA_15 and PENTA_18 elements have a node at the middle of each of the nine edges;
PENTA_18 adds a node at the middle of each of the three quadrilateral faces.

PENTA_6

�
�
�
�
�
�
�
�Z
Z
Z
Z
Z
Z
Z
Z

v
1

v
2

v3

v4 v5

v6 PENTA_15

�
�
�
�
�
�
�
�Z
Z
Z
Z
Z
Z
Z
Z

v
1

v
2

v3

v4 v5

v6

v
7

v8v9

v10 v11

v12
v

13

v14v15

PENTA_18

�
�
�
�
�
�
�
�Z
Z
Z
Z
Z
Z
Z
Z

v
1

v
2

v3

v4 v5

v6

v
7

v8v9

v10 v11

v12
v

13

v14v15

v
16

v17v18

Edge Definition

Oriented Corner Mid-
edges nodes node
E1 N1,N2 N7
E2 N2,N3 N8
E3 N3,N1 N9
E4 N1,N4 N10
E5 N2,N5 N11
E6 N3,N6 N12
E7 N4,N5 N13
E8 N5,N6 N14
E9 N6,N4 N15

20



AIAA R-101A-2005

Face Definition

Face Corner nodes Mid-edge nodes Mid-face node Oriented edges
F1 N1,N2,N5,N4 N7, N11,N13,N10 N16 E1, E5,-E7,-E4
F2 N2,N3,N6,N5 N8, N12,N14,N11 N17 E2, E6,-E8,-E5
F3 N3,N1,N4,N6 N9, N10,N15,N12 N18 E3, E4,-E9,-E6
F4 N1,N3,N2 N9, N8, N7 -E3,-E2,-E1
F5 N4,N5,N6 N13,N14,N15 E7, E8, E9

Notes

N1,...,N18 Grid point identification number. Integer ≥ 0 or blank, and N1 6= N2 6= . . . 6=
N18. Grid points N1. . . N3 are in consecutive order about one trilateral face. Grid
points N4. . . N6 are in order in the same direction around the opposite trilateral
face.

E1,...,E9 Edge identification number. The edges are oriented from the first to the second
node. A negative edge (e.g., -E1) means that the edge is used in its reverse
direction.

F1,...,F5 Face identification number. The faces are oriented so that the cross product of
a vector from its first to second node, with a vector from its first to third node,
is oriented outward.

3.3.3.4 Hexahedral Elements

CGNS supports three types of hexahedral elements, HEXA_8, HEXA_20, and HEXA_27. HEXA_8 ele-
ments are composed of eight nodes located at the eight geometric corners of the hexahedron. In
addition, HEXA_20 and HEXA_27 elements have a node at the middle of each of the twelve edges;
HEXA_27 adds a node at the middle of each of the six faces, and one at the cell center.

HEXA_8

�
�
�
�

�
�
�
��

�
�
�

v
1

v2v3
v

4

v5

v6v7
v8

HEXA_20

�
�
�
�

�
�
�
��

�
�
�

v
1

v2v3
v

4

v5

v6v7
v8

v
9

v10

v11

v
12

v13

v14v15

v16

v
17

v18

v19

v20

21



AIAA R-101A-2005

HEXA_27

�
�
�
�

�
�
�
��

�
�
�

v
1

v2v3
v

4

v5

v6v7
v8

v
9

v10

v11

v
12

v13

v14v15

v16

v
17

v18

v19

v20

v
21

v
22

v23

v24

v25

v26

v27

Edge Definition

Oriented Corner Mid-
edges nodes node
E1 N1,N2 N9
E2 N2,N3 N10
E3 N3,N4 N11
E4 N4,N1 N12
E5 N1,N5 N13
E6 N2,N6 N14
E7 N3,N7 N15
E8 N4,N8 N16
E9 N5,N6 N17
E10 N6,N7 N18
E11 N7,N8 N19
E12 N8,N5 N20

Face Definition

Face Corner nodes Mid-edge nodes Mid-face node Oriented edges
F1 N1,N4,N3,N2 N12,N11,N10,N9 N21 -E4,-E3, -E2, -E1
F2 N1,N2,N6,N5 N9, N14,N17,N13 N22 E1, E6, -E9, -E5
F3 N2,N3,N7,N6 N10,N15,N18,N14 N23 E2, E7, -E10,-E6
F4 N3,N4,N8,N7 N11,N16,N19,N15 N24 E3, E8, -E11,-E7
F5 N1,N5,N8,N4 N13,N20,N16,N12 N25 E5,-E12,-E8, E4
F6 N5,N6,N7,N8 N17,N18,N19,N20 N26 E9, E10, E11, E12

Notes

N1,...,N27 Grid point identification number. Integer ≥ 0 or blank, and N1 6= N2 6= . . . 6=
N27. Grid points N1. . . N4 are in consecutive order about one quadrilateral face.
Grid points N5. . . N8 are in order in the same direction around the opposite
quadrilateral face.

E1,...,E12 Edge identification number. The edges are oriented from the first to the second
node. A negative edge (e.g., -E1) means that the edge is used in its reverse
direction.

F1,...,F6 Face identification number. The faces are oriented so that the cross product of
a vector from its first to second node, with a vector from its first to third node,
is oriented outward.

3.3.4 Unstructured Grid Example

Consider an unstructured zone in the shape of a cube, with each edge of the zone having three
nodes. The resulting unstructured grid has a total of 27 nodes, as illustrated in the exploded figure
below.

22



AIAA R-101A-2005

�
�
�
�

�
�
�
��

�
�
�

�
�
�
�

�
�
�
�

s
19

s s
21

s s ss
1

s s
3

s s
23

ss s
14

ss s
5

ss25 s s27
s s ss7 s s9

�
�
�
�

s
19

s
20

s
21

s10 s11 s
12

s1 s2 s3

�
�
�
�

�
�
�
�

�
�
�
�

s
25

s
26

s
27

s16 s17 s
18

s7 s8 s9

�
�
�
�

s
19

s
22

s25

s
10

s
13

s16

s
1

s4

s7
�
�
�
�

�
�
�
�

�
�
�
�

s
21

s
24

s27

s
12

s
15

s18

s
3

s6

s9

This zone contains eight hexahedral cells, numbered 1 to 8, and the cell connectivity is:

Element No. Element Connectivity

1 1, 2, 5, 4, 10, 11, 14, 13
2 2, 3, 6, 5, 11, 12, 15, 14
3 4, 5, 8, 7, 13, 14, 17, 16
4 5, 6, 9, 8, 14, 15, 18, 17
5 10, 11, 14, 13, 19, 20, 23, 22
6 11, 12, 15, 14, 20, 21, 24, 23
7 13, 14, 17, 16, 22, 23, 26, 25
8 14, 15, 18, 17, 23, 24, 27, 26

In addition to the cells, the boundary faces could also be added to the element definition of this
unstructured zone. There are 24 boundary faces in this zone, corresponding to element numbers 9
to 32. Each boundary face is of type QUAD_4. The table below shows the element connectivity of
each boundary face, as well as the element number and face number of its parent cell.

23



AIAA R-101A-2005

Element Parent ParentFace Element No.
Connectivity Cell Face

Left 9 1, 10, 13, 4 1 5
10 4, 13, 16, 7 3 5
11 10, 19, 22, 13 5 5
12 13, 22, 25, 16 7 5

Right 13 3, 6, 15, 12 2 3
14 6, 9, 18, 15 4 3
15 12, 15, 24, 21 6 3
16 15, 18, 27, 24 8 3

Bottom 17 1, 2, 11, 10 1 2
18 2, 3, 12, 11 2 2
19 10, 11, 20, 19 5 2
20 11, 12, 21, 20 6 2

Top 21 7, 16, 17, 8 3 4
22 8, 17, 18, 9 4 4
23 16, 25, 26, 17 7 4
24 17, 26, 27, 18 8 4

Back 25 1, 4, 5, 2 1 1
26 2, 5, 6, 3 2 1
27 4, 7, 8, 5 3 1
28 5, 8, 9, 6 4 1

Front 29 19, 20, 23, 22 5 6
30 20, 21, 24, 23 6 6
31 22, 23, 26, 25 7 6
32 23, 24, 27, 26 8 6

3.4 Multizone Interfaces

Figure 2 depicts three types of multizone interfaces, shown for structured zones. The first type
is a 1-to-1 abutting interface, also referred to as matching or C0 continuous. The interface is a
plane of vertices that are physically coincident between the adjacent zones. For structured zones,
grid-coordinate lines perpendicular to the interface are continuous from one zone to the next; in
3-D, a 1-to-1 abutting interface is usually a logically rectangular region.

The second type of interface is mismatched abutting, where two zones touch but do not overlap
(except for vertices and cell faces on the grid plane of the interface). Vertices on the interface
may not be physically coincident between the two zones. Figure 2b identifies the vertices and face

24



AIAA R-101A-2005

r
r
r
r
r

• Left-zone vertices on interface

(a) 1-to-1 Abutting Interface

r
r
r
r

×

×

×

×

• Left-zone vertices on interface
× Left-zone face-centers on interface

(b) Mismatched Abutting Interface

r
r

r
r

r r
r

c
c
c
c
c
c

c
c
c
c

c
cc

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

J
J
J
J
J
J
J
J
J

J
J
J
J
J
J
J
J
J

J
J
J
J
J
J
J
J
J

J
J
J
J
J
J
J
J
J

J
J
J
J
J
J
J
J
J

J
J
J
J
J
J
J
J
J

• Left-zone fringe points (vertices)
◦ Left-zone overset-hole points (vertices)

(c) Overset Interface

Figure 2: Structured-Grid Multizone Interface Types

25



AIAA R-101A-2005

centers of the left zone that lay on the interface. Even for structured zones in 3-D, the vertices of
a zone that constitute an interface patch may not form a logically rectangular region.

The third type of multizone interface is called overset and occurs when two zones overlap; in 3-D,
the overlap is a 3-D region. For overset interfaces, one of the two zones takes precedence over the
other; this establishes which solution in the overlap region to retain and which to discard. The
region in a given zone where the solution is discarded is called an overset hole and the grid points
outlining the hole are called fringe points. Figure 2c depicts an overlap region between two zones.
The right zone takes precedence over the left zone, and the points identified in the figure are the
fringe points and overset-hole points for the left zone. In addition, for the zone taking precedence,
any bounding points (i.e. vertices on the bounding faces) of the zone that lay within the overlap
region must also be identified.

Overset interfaces may also include multiple layers of fringe points outlining holes and at zone
boundaries.

For the mismatched abutting and overset interfaces in Figure 2, the left zone plays the role of
receiver zone and the right plays the role of donor zone.

26



AIAA R-101A-2005

4 Building-Block Structure Definitions

This section defines and describes low-level structures types that are used in the definition of more
complex structures within the hierarchy.

4.1 Definition: DataClass_t

DataClass_t is an enumeration type that identifies the class of a given piece of data.

DataClass_t := Enumeration(
Null,
Dimensional,
NormalizedByDimensional,
NormalizedByUnknownDimensional,
NondimensionalParameter,
DimensionlessConstant,
UserDefined ) ;

These classes divide data into different categories depending on dimensional units or normalization
associated with the data. Dimensional specifies dimensional data. NormalizedByDimensional
specifies nondimensional data that is normalized by dimensional reference quantities. In contrast,
NormalizedByUnknownDimensional specifies nondimensional data typically found in completely
nondimensional databases, where all field and reference data is nondimensional. Nondimension-
alParameter specifies nondimensional parameters such as Mach number and lift coefficient. Con-
stants such as π are designated by DimensionlessConstant. The distinction between these different
classes is further discussed in Section 5.

4.2 Definition: Descriptor_t

Descriptor_t is a documentation or annotation structure which contains a character string. Char-
acters allowed within the string include newlines, tabs and other special characters; this poten-
tially allows for unlimited documentation inclusion within the database. For example, a single
Descriptor_t structure could be used to ‘swallow’ an entire ASCII file. In the hierarchical struc-
tures defined in the next sections, each allows for the inclusion of multiple Descriptor_t substruc-
tures. Conventions could be made for names of often-used Descriptor_t structure entities, such
as ReadMe or YouReallyWantToReadMeFirst.

Descriptor_t :=
{
Data(char, 1, string_length) ; (r)
} ;

where string_length is the length of the character string.

27



AIAA R-101A-2005

4.3 Definition: DimensionalUnits_t

DimensionalUnits_t describes the system of units used to measure dimensional data. It is com-
posed of a set of enumeration types that define the units for mass, length, time, temperature, angle,
electric current, substance amount, and luminous intensity.

MassUnits_t := Enumeration( Null, Kilogram, Gram, Slug, PoundMass,
UserDefined ) ;

LengthUnits_t := Enumeration( Null, Meter, Centimeter, Millimeter,
Foot, Inch, UserDefined ) ;

TimeUnits_t := Enumeration( Null, Second, UserDefined ) ;

TemperatureUnits_t := Enumeration( Null, Kelvin, Celsius, Rankine,
Fahrenheit, UserDefined ) ;

AngleUnits_t := Enumeration( Null, Degree, Radian, UserDefined ) ;

ElectricCurrentUnits_t := Enumeration( Null, Ampere, Abampere, Statampere,
Edison, auCurrent, UserDefined ) ;

SubstanceAmountUnits_t := Enumeration( Null, Mole, Entities,
StandardCubicFoot,
StandardCubicMeter, UserDefined ) ;

LuminousIntensityUnits_t := Enumeration( Null, Candela, Candle, Carcel,
Hefner, Violle, UserDefined ) ;

DimensionalUnits_t :=
{
MassUnits_t MassUnits ; (r)
LengthUnits_t LengthUnits ; (r)
TimeUnits_t TimeUnits ; (r)
TemperatureUnits_t TemperatureUnits ; (r)
AngleUnits_t AngleUnits ; (r)
AdditionalUnits_t := (o)
{
ElectricCurrentUnits_t ElectricCurrentUnits ; (r)
SubstanceAmountUnits_t SubstanceAmountUnits ; (r)
LuminousIntensityUnits_t LuminousIntensityUnits ; (r)
}

} ;

The International System (SI) uses the following units.

28



AIAA R-101A-2005

Physical Quantity Unit

Mass Kilogram
Length Meter
Time Second
Temperature Kelvin
Angle Radian
Electric Current Ampere
Substance Amount Mole
Luminous Intensity Candela

For an entity of type DimensionalUnits_t, if all the elements of that entity have the value Null
(i.e., MassUnits = Null, etc.), this is equivalent to stating that the data described by the entity is
nondimensional.

4.4 Definition: DimensionalExponents_t

DimensionalExponents_t describes the dimensionality of data by defining the exponents associated
with each of the fundamental units.

DimensionalExponents_t :=
{
real MassExponent ; (r)
real LengthExponent ; (r)
real TimeExponent ; (r)
real TemperatureExponent ; (r)
real AngleExponent ; (r)
AdditionalExponents_t := (o)
{
real ElectricCurrentExponent ; (r)
real SubstanceAmountExponent ; (r)
real LuminousIntensityExponent ; (r)
}

} ;

For example, an instance of DimensionalExponents_t that describes velocity is,

DimensionalExponents_t =
{{
MassExponent = 0 ;
LengthExponent = +1 ;
TimeExponent = -1 ;
TemperatureExponent = 0 ;
AngleExponent = 0 ;
}} ;

29



AIAA R-101A-2005

4.5 Definition: GridLocation_t

GridLocation_t identifies locations with respect to the grid; it is an enumeration type.

GridLocation_t := Enumeration(
Null,
Vertex,
CellCenter,
FaceCenter,
IFaceCenter,
JFaceCenter,
KFaceCenter,
EdgeCenter,
UserDefined ) ;

Vertex is coincident with the grid vertices. CellCenter is the center of a cell; this is also appropriate
for entities associated with cells but not necessarily with a given location in a cell. For structured
zones, IFaceCenter is the center of a face in 3-D whose computational normal points in the i
direction. JFaceCenter and KFaceCenter are similarly defined, again only for structured zones.
FaceCenter is the center of a generic face which can point in any coordinate direction. These are
also appropriate for entities associated with a face, but not located at a specific place on the face.
EdgeCenter is the center of an edge. See Section 3.2 for descriptions of cells, faces and edges.

All of the entities of type GridLocation\_t defined in this document use a default value of Vertex.

4.6 Definition: IndexArray_t

IndexArray_t specifies an array of indices. An argument is included that allows for specifying the
data type of each index; typically the data type will be integer (int). IndexArray_t defines an
array of indices of size ArraySize, where the dimension of each index is IndexDimension.

IndexArray_t< int IndexDimension, int ArraySize, DataType > :=
{
Data( DataType, 2, [IndexDimension,ArraySize] ) ; (r)
} ;

4.7 Definition: IndexRange_t

IndexRange_t specifies the beginning and ending indices of a subrange. The subrange may describe
a portion of a grid line, grid plane, or grid volume.

IndexRange_t< int IndexDimension > :=
{
int[IndexDimension] Begin ; (r)
int[IndexDimension] End ; (r)
} ;

30



AIAA R-101A-2005

where Begin and End are the indices of the opposing corners of the subrange.

4.8 Definition: Rind_t

Rind_t describes the number of rind planes associated with a data array containing grid coordinates,
flow-solution data or any other grid-related discrete data for structured zones.

Rind_t< int IndexDimension > :=
{
int[2*IndexDimension] RindPlanes ; (r)
} ;

RindPlanes contains the number of rind planes attached to the minimum and maximum faces of a
zone. The face corresponding to each index n of RindPlanes in 3-D is:

n = 1 → i-min n = 2 → i-max
n = 3 → j-min n = 4 → j-max
n = 5 → k-min n = 6 → k-max

For a 3-D grid whose ‘core’ size is II×JJ×KK, a value of RindPlanes = [a,b,c,d,e,f] indicates
that the range of indices for the grid with rind is:

i: (1 - a, II + b)
j: (1 - c, JJ + d)
k: (1 - e, KK + f)

31



AIAA R-101A-2005

5 Data-Array Structure Definitions

This section defines the structure type DataArray_t for describing data arrays. This general-
purpose structure is used to declare data arrays and scalars throughout the CGNS hierarchy. It
is used to describe grid coordinates, flow-solution data, governing flow parameters, boundary-
condition data, and other information. For most of these different types of CFD data, we have also
established a list of standardized identifiers for entities of type DataArray_t. For example, Density
is used for data arrays containing static density. The list of standardized data-name identifiers is
provided in Annex A.

We address five classes of data with the DataArray_t structure type:

(a) dimensional data (e.g. velocity in units of m/s);

(b) nondimensional data normalized by dimensional reference quantities;

(c) nondimensional data with associated nondimensional reference quantities;

(d) nondimensional parameters (e.g. Reynolds number, pressure coefficient);

(e) pure constants (e.g. π, e).

The first two of these classes often occur within the same test case, where each piece of data is
either dimensional itself or normalized by a dimensional quantity. The third data class is typical
of a completely nondimensional test case, where all field data and reference quantities are nondi-
mensional. The forth class, nondimensional parameters, are universal in CFD, although not always
consistently defined. The individual components of nondimensional parameters may be data from
any of the first three classes.

Each of the five classes of data requires different information to describe dimensional units or
normalization associated with the data. These requirements are reflected in the structure definition
for DataArray_t.

The remainder of this section is as follows: the structure type DataArray_t is first defined. Then
the class identification and data manipulation is discussed in Section 5.2 for each of the five data
classes. Finally, examples of DataArray_t entities are presented in Section 5.3.

5.1 Definition: DataArray_t

DataArray_t describes a multi-dimensional data array of given type, dimensionality and size in
each dimension. The data may be dimensional, nondimensional or pure constants. Qualifiers are
provided to describe dimensional units or normalization information associated with the data.

DataArray_t< DataType, int Dimension, int[Dimension] DimensionValues > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

Data( DataType, Dimension, DimensionValues ) ; (r)

32



AIAA R-101A-2005

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

DimensionalExponents_t DimensionalExponents ; (o)

DataConversion_t DataConversion ; (o)
} ;

Notes

1. Default names for the Descriptor_t list are as shown; users may choose other legitimate
names. Legitimate names must be unique within a given instance of DataArray_t and
shall not include the names DataClass, DimensionalUnits, DimensionalExponents, or
DataConversion.

2. Data() is the only required field for DataArray_t.

DataArray_t requires three structure parameters: Dimension is the dimensionality of the data
array; DimensionValues is an array of length Dimension that contains the size of the data arrays
in each dimension; and DataType is the data type of the data stored. DataType will usually be
real, but other data types are permissible.

The optional entities DataClass, DimensionalUnits, DimensionalExponents and DataConver-
sion provide information on dimensional units and normalization associated with the data. The
function of these qualifiers is provided in the next section.

This structure type is formulated to describe an array of scalars. Therefore, for vector quantities
(e.g. the position vector or the velocity vector), separate structure entities are required for each
component of the vector. For example, the cartesian coordinates of a 3-D grid are described by
three separate DataArray_t entities: one for x, one for y and one for z (see Example 7-A).

5.1.1 Definition: DataConversion_t

DataConversion_t contains conversion factors for recovering raw dimensional data from given
nondimensional data. These conversion factors are typically associated with nondimensional data
that is normalized by dimensional reference quantities.

DataConversion_t :=
{
real ConversionScale ; (r)

real ConversionOffset ; (r)
} ;

Given a nondimensional piece of data, Data(nondimensional), the conversion to ‘raw’ dimensional
form is:

33



AIAA R-101A-2005

Data(raw) = Data(nondimensional)*ConversionScale + ConversionOffset

These conversion factors are further described in Section 5.2.2.

5.2 Data Manipulation

The optional entities of DataArray_t provide information for manipulating the data, including
changing units or normalization. This section describes the rules under which these optional entities
operate and the specific manipulations that can be performed on the data.

Within a given instance of DataArray_t, the class of data and all information required for manip-
ulations may be completely and precisely specified by the entities DataClass, DimensionalUnits,
DimensionalExponents and DataConversion. DataClass identifies the class of data and governs
the manipulations that can be performed. Each of the five data classes is treated separately in the
subsequent sections.

The entities DataClass and DimensionalUnits serve special functions in the CGNS hierarchy.
If DataClass is absent from a given instance of DataArray_t, then its value is determined from
‘global’ data. This global data may be set at any level of the CGNS hierarchy with the data set at
the lowest level taking precedence. DimensionalUnits may be similarly set by global data. The
rules for determining the appropriate set of global data to apply is further detailed in Section 6.4.

This alternate functionality provides a measure of economy in describing dimensional units or nor-
malization within the hierarchy. Examples that make use of global data are presented in Section 7.2
and Section 7.8 for grid and flow solution data. The complete two-zone case of Annex B also depicts
this alternate functionality.

5.2.1 Dimensional Data

If DataClass = Dimensional, the data is dimensional. The optional qualifiers DimensionalUnits
and DimensionalExponents describe dimensional units associated with the data. These qualifiers
are provided to specify the system of dimensional units and the dimensional exponents, respectively.
For example, if the data is the x-component of velocity, then DimensionalUnits will state that the
pertinent dimensional units are, say, Meter and Second; DimensionalExponents will specify the
pertinent dimensional exponents are LengthExponent = 1 and TimeExponent = -1. Combining the
information gives the units m/s. Examples showing the use of these two qualifiers are provided in
Section 5.3.

If DimensionalUnits is absent, then the appropriate set of dimensional units is obtained from
‘global’ data. The rules for determining this appropriate set of ‘global’ dimensional units are
presented in Section 6.4.

If DimensionalExponents is absent, then the appropriate dimensional exponents can be deter-
mined by convention if the specific instance of DataArray_t corresponds to one of the standardized
data-name identifiers listed in Annex A. Otherwise, the exponents are unspecified. We strongly
recommend inclusion of the DimensionalExponents qualifier whenever the data is dimensional and
the instance of DataArray_t is not among the list of standardized identifiers.

34



AIAA R-101A-2005

5.2.2 Nondimensional Data Normalized by Dimensional Quantities

If DataClass = NormalizedByDimensional, the data is nondimensional and is normalized by di-
mensional reference quantities. All optional entities in DataArray_t are used. DataConversion
contains factors to convert the nondimensional data to ‘raw’ dimensional data; these factors are
ConversionScale and ConversionOffset. The conversion process is as follows:

Data(raw) = Data(nondimensional)*ConversionScale + ConversionOffset

where Data(nondimensional) is the original nondimensional data, and Data(raw) is the converted
raw data. This converted raw data is dimensional, and the optional qualifiers DimensionalUnits
and DimensionalExponents describe the appropriate dimensional units and exponents. Note that
DimensionalUnits and DimensionalExponents also describe the units for ConversionScale and
ConversionOffset.

If DataConversion is absent, the equivalent defaults are ConversionScale = 1 and Conver-
sionOffset = 0. If either DimensionalUnits or DimensionalExponents is absent, follow the
rules described in the previous section.

Note that functionally there is little difference between these first two data classes (DataClass =
Dimensional and NormalizedByDimensional). In the first case the data is dimensional, and in
the second, the converted raw data is dimensional. Also, the equivalent defaults for DataConver-
sion produce no changes in the data; hence, it is almost the same as stating the original data is
dimensional.

5.2.3 Nondimensional Data Normalized by Unknown Dimensional Quantities

If DataClass = NormalizedByUnknownDimensional, the data is nondimensional and is normalized
by some unspecified dimensional quantities. This type of data is typical of a completely nondimen-
sional test case, where all field data and all reference quantities are nondimensional.

Only the DimensionalExponents qualifier is used in this case, although it is expected that this
qualifier will be seldom utilized in practice. For entities of DataArray_t that are not among the
list of standardized data-name identifiers, the qualifier could provide useful information by defining
the exponents of the dimensional form of the nondimensional data.

Rather than providing qualifiers to describe the normalization of the data, we instead dictate that
all data of type NormalizedByUnknownDimensional in a given database be nondimensionalized
consistently. This is done by picking one set of mass, length, time and temperature scales and
normalizing all appropriate data by these scales. We describe this process in detail in the following.
Annex B also shows a completely nondimensional database where consistent normalization is used
throughout.

The practice of nondimensionalization within flow solvers and other application codes is quite
popular. The problem with this practice is that to manipulate the data from a given code, one must
often know the particulars of the nondimensionalization used. This largely results from what we
call inconsistent normalization—more than the minimum required scales are used to normalize data

35



AIAA R-101A-2005

within the code. For example, in the OVERFLOW flow solver, the following nondimensionalization
is used:

x̃ = x/L, ũ = u/c∞, ρ̃ = ρ/ρ∞,
ỹ = y/L, ṽ = v/c∞, p̃ = p/(ρ∞c2∞),
z̃ = z/L, w̃ = w/c∞, µ̃ = µ/µ∞,

where (x, y, z) are the cartesian coordinates, (u, v, w) are the cartesian components of velocity, ρ is
static density, p is static pressure, c is the static speed of sound, and µ is the molecular viscosity. In
this example, tilde quantities (˜) are nondimensional and all others are dimensional. Four dimen-
sional scales are used for normalization: L (a unit length), ρ∞, c∞ and µ∞. However, only three
fundamental dimensional units are represented: mass, length and time. The extra normalizing
scale leads to inconsistent normalization. The primary consequence of this is additional nondi-
mensional parameters, such as Reynolds number, appearing in the nondimensionalized governing
equations where none are found in the original dimensional equations. Many definitions, including
skin friction coefficient, also have extra terms appearing in the nondimensionalized form. This adds
unnecessary complication to any data or equation manipulation associated with the flow solver.

Consistent normalization avoids many of these problems. Here the number of scales used for
normalization is the same as the number of fundamental dimensional units represented by the
data. Using consistent normalization, the resulting nondimensionalized form of equations and
definitions is identical to their original dimensional formulations. One piece of evidence to support
this assertion is that it is not possible to form any nondimensional parameters from the set of
dimensional scales used for normalization.

An important fallout of consistent normalization is that the actual scales used for normalization
become immaterial for all data manipulation processes. To illustrate this consider the following
nondimensionalization procedure: let M (mass), L (length) and T (time) be arbitrary dimensional
scales by which all data is normalized (neglect temperature data for the present). The nondimen-
sional data follows:

x′ = x/L, u′ = u/(L/T ), ρ′ = ρ/(M/L3),
y′ = y/L, v′ = v/(L/T ), p′ = p/(M/(LT 2)),
z′ = z/L, w′ = w/(L/T ), µ′ = µ/(M/(LT )),

where primed quantities are nondimensional and all others are dimensional.

Consider an existing database where all field data and all reference data is nondimensional and
normalized as shown. Assume the database has a single reference state given by,

x′ref = xref/L, u′ref = uref/(L/T ), ρ′ref = ρref/(M/L3),
y′ref = yref/L, v′ref = vref/(L/T ), p′ref = pref/(M/(LT 2))
z′ref = zref/L, w′ref = wref/(L/T ), µ′ref = µref/(M/(LT )).

If a user wanted to change the nondimensionalization of grid-point pressures, the procedure is
straightforward. Let the desired new normalization be given by p′′ijk = pijk/(ρrefc

2
ref), where all

terms on the right-hand-side are dimensional, and as such they are unknown to the database user.
However, the desired manipulation is possible using only nondimensional data provided in the

36



AIAA R-101A-2005

database,
p′′ijk ≡ pijk/(ρrefc

2
ref)

=
pijk

M/(LT 2)
M/L3

ρref

[
L/T

cref

]2

= p′ijk/(ρ
′
ref(c

′
ref)

2)

Thus, the desired renormalization is possible using the database’s nondimensional data as if it were
actually dimensional. There is, in fact, a high degree of equivalence between dimensional data and
consistently normalized nondimensional data. The procedure shown in this example should extend
to any desired renormalization, provided the needed reference-state quantities are included in the
database.

This example points out two stipulations that we now dictate for data in the class Normalized-
ByUnknownDimensional,

(a) All nondimensional data within a given database that has DataClass = NormalizedByUn-
knownDimensional shall be consistently normalized.

(b) Any nondimensional reference state appearing in a database should be sufficiently populated
with reference quantities to allow for renormalization procedures.

The second of these stipulations is somewhat ambiguous, but good practice would suggest that a
flow solver, for example, should output to the database enough static and/or stagnation reference
quantities to sufficiently define the state.

Annex B shows an example of a well-populated reference state.

With these two stipulations, we contend the following:

• The dimensional scales used to nondimensionalize all data are immaterial, and there is no
need to identify these quantities in a CGNS database.

• The dimensional scales need not be reference-state quantities provided in the database. For
example, a given database could contain freestream reference state conditions, but all the
data is normalized by sonic conditions (which are not provided in the database).

• All renormalization procedures can be carried out treating the data as if it were dimensional
with a consistent set of units.

• Any application code that internally uses consistent normalization can use the data provided
in a CGNS database without modification or transformation to the code’s internal normal-
ization.

Before ending this section, we note that the OVERFLOW flow solver mentioned above (or any
other application code that internally uses inconsistent normalization) could easily read and write
data to a nondimensional CGNS database that conforms to the above stipulations. On output, the
code could renormalize data so it is consistently normalized. Probably, the easiest method would
be to remove the molecular viscosity scale (µ∞), and only use L, ρ∞ and c∞ for all normalizations

37



AIAA R-101A-2005

(recall these are dimensional scales). The only change from the above example would be the
nondimensionalization of viscosity, which would become, ˜̃µ = µ/(ρ∞c∞L). The code could then
output all field data as,

x̃ijk = xijk/L, ũijk = uijk/c∞, ρ̃ijk = ρijk/ρ∞,
ỹijk = yijk/L, ṽijk = vijk/c∞, p̃ijk = pijk/(ρ∞c2∞),
z̃ijk = zijk/L, w̃ijk = wijk/c∞, ˜̃µijk = µijk/(ρ∞c∞L),

and output the freestream reference quantities,

ũ∞ = u∞/c∞, ρ̃∞ = ρ∞/ρ∞ = 1,
ṽ∞ = v∞/c∞, p̃∞ = p∞/(ρ∞c2∞) = 1/γ,
w̃∞ = w∞/c∞, ˜̃µ∞ = µ∞/(ρ∞c∞L) ∼ O(1/Re),
c̃∞ = c∞/c∞ = 1, L̃ = L/L = 1,

where γ is the specific heat ratio (assumes a perfect gas) and Re is the Reynolds number.

On input, the flow solver should be able to recover its internal normalizations from the data in a
nondimensional CGNS database by treating the data as if it were dimensional.

5.2.4 Nondimensional Parameters

If DataClass = NondimensionalParameter, the data is a nondimensional parameter (or array
of nondimensional parameters). Examples include Mach number, Reynolds number and pressure
coefficient. These parameters are prevalent in CFD, although their definitions tend to vary be-
tween different application codes. A list of standardized data-name identifiers for nondimensional
parameters is provided in Annex A.4.

We distinguish nondimensional parameters from other data classes by the fact that they are always
dimensionless. In a completely nondimensional database, they are distinct in that their normaliza-
tion is not necessarily consistent with other data.

Typically, the DimensionalUnits, DimensionalExponents and DataConversion qualifiers are not
used for nondimensional parameters; although, there are a few situations where they may be used
(these are discussed below). Rather than rely on optional qualifiers to describe the normalization,
we establish the convention that any nondimensional parameters should be accompanied by their
defining scales; this is further discussed in Annex A.4. An example is Reynolds number defined
as Re = V LR/ν, where V , LR and ν are velocity, length, and viscosity scales, respectively. Note
that these defining scales may be dimensional or nondimensional data. We establish the data-name
identifiers Reynolds, Reynolds_Velocity, Reynolds_Length and Reynolds_ViscosityKinematic
for the Reynolds number and its defining scales. Anywhere an instance of DataArray_t is found
with the identifier Reynolds, there should also be entities for the defining scales. An example of
this use for Reynolds number is given in Section 5.3.

In certain situations, it may be more convenient to use the optional qualifiers of DataArray_t to
describe the normalization used in nondimensional parameters. These situations must satisfy two
requirements: First, the defining scales are dimensional; and second, the nondimensional parameter
is a normalization of a single ‘raw’ data quantity and it is clear what this raw data is. Examples

38



AIAA R-101A-2005

that satisfy this second constraint are pressure coefficient, where the raw data is static pressure, and
lift coefficient, where the raw data is the lift force. Conversely, Reynolds number is a parameter
that violates the second requirement—there are three pieces of raw data rather than one that
make up Re. For nondimensional parameters that satisfy these two requirements, the qualifiers
DimensionalUnits, DimensionalExponents and DataConversion may be used as in Section 5.2.2
to recover the raw dimensional data.

5.2.5 Dimensionless Constants

If DataClass = DimensionlessConstant, the data is a constant (or array of constants) with no as-
sociated dimensional units. The DimensionalUnits, DimensionalExponents and DataConversion
qualifiers are not used.

5.3 Data-Array Examples

This section presents five examples of data-array entities and illustrates the use of optional infor-
mation for describing dimensional and nondimensional data.

Example 5-A: One-Dimensional Data Array, Constants

A one-dimensional array of integers; the array is the integers from 1 to 10. The data is pure
constants.

! DataType = int
! Dimension = 1
! DimensionValues = 10
DataArray_t<int, 1, 10> Data1 =
{{
Data(int, 1, 10) = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ;

DataClass_t DataClass = DimensionlessConstant ;
}} ;

The structure parameters for DataArray_t state the data is an one-dimensional integer array of
length ten. The value of DataClass indicates the data is unitless constants.

Example 5-B: Two-Dimensional Data Array, Pressures

A two-dimensional array of pressures with size 11 × 9 given by the array P(i,j). The data is
dimensional with units of N/m2 (i.e., kg/(m-s2)). Note that Pressure is the data-name identifier
for static pressure.

! DataType = real
! Dimension = 2
! DimensionValues = [11,9]
DataArray_t<real, 2, [11,9]> Pressure =

39



AIAA R-101A-2005

{{
Data(real, 2, [11,9]) = ((P(i,j), i=1,11), j=1,9) ;

DataClass_t DataClass = Dimensional ;

DimensionalUnits_t DimensionalUnits =
{{
MassUnits = Kilogram ;
LengthUnits = Meter ;
TimeUnits = Second ;
TemperatureUnits = Null ;
AngleUnits = Null ;
}} ;

DimensionalExponents_t DimensionalExponents =
{{
MassExponent = +1 ;
LengthExponent = -1 ;
TimeExponent = -2 ;
TemperatureExponent = 0 ;
AngleExponent = 0 ;
}} ;

}} ;

From the data-name identifier conventions presented in Annex A, Pressure has a floating-point
data type; hence, the appropriate structure parameter for DataArray_t is real.

The value of DataClass indicates that the data is dimensional, and both the dimensional units
and dimensional exponents are provided. DimensionalUnits specifies that the units are kilograms,
meters, and seconds, and DimensionalExponents specifies the appropriate exponents for pressure.
Combining the information gives pressure as kg/(m-s2). DimensionalExponents could have been
defaulted, since the dimensional exponents are given in Annex A for the data-name identifier
Pressure.

Note that FORTRAN multidimensional array indexing is used to store the data; this is reflected in
the FORTRAN-like implied do-loops for P(i,j).

Example 5-C: Three-Dimensional Data Array, Nondimensional Static Enthalpy

A 3-D array of size 33× 9× 17 containing nondimensional static enthalpy. The data is normalized
by freestream velocity as follows:

h̄i,j,k =
hi,j,k

q2ref
,

where h̄i,j,k is nondimensional static enthalpy. The freestream velocity is dimensional with a value
of 10 m/s.

! DataType = real

40



AIAA R-101A-2005

! Dimension = 3
! DimensionValues = [33,9,17]
DataArray_t<real, 3, [33,9,17]> Enthalpy =
{{
Data(real, 3, [33,9,17]) = (((H(i,j,k), i=1,33), j=1,9), k=1,17) ;

DataClass_t DataClass = NormalizedByDimensional ;

DataConversion_t DataConversion =
{{
real ConversionScale = 100 ;
real ConversionOffset = 0 ;
}} ;

DimensionalUnits_t DimensionalUnits =
{{
MassUnits = Null ;
LengthUnits = Meter ;
TimeUnits = Second ;
TemperatureUnits = Null ;
AngleUnits = Null ;
}} ;

DimensionalExponents_t DimensionalExponents =
{{
MassExponent = 0 ;
LengthExponent = +2 ;
TimeExponent = -2 ;
TemperatureExponent = 0 ;
AngleExponent = 0 ;
}} ;

}} ;

From Annex A, the identifier for static enthalpy is Enthalpy and its data type is real.

The value of DataClass indicates that the data is nondimensional and normalized by a dimensional
reference quantity. DataConversion provides the conversion factors for recovering the raw static
enthalpy, which has units of m2/s2 as indicated by DimensionalUnits and DimensionalExponents.
Note that DimensionalExponents could have been defaulted using the conventions for the data-
name identifier Enthalpy.

Example 5-D: Three-Dimensional Data Array, Nondimensional Database

The previous example for nondimensional enthalpy is repeated for a completely nondimensional
database.

! DataType = real

41



AIAA R-101A-2005

! Dimension = 3
! DimensionValues = [33,9,17]
DataArray_t<real, 3, [33,9,17]> Enthalpy =
{{
Data(real, 3, [33,9,17]) = (((H(i,j,k), i=1,33), j=1,9), k=1,17) ;

DataClass_t DataClass = NormalizedByUnknownDimensional ;
}} ;

The value of DataClass indicates the appropriate class.

Example 5-E: Data Arrays for Reynolds Number

Reynolds number of 1.554×106 based on a velocity scale of 10 m/s, a length scale of 2.3 m and
a kinematic viscosity scale of 1.48×10−5 m2/s. Assume the database has globally set the dimen-
sional units to kilograms, meters, and seconds, and the global default data class to dimensional
(DataClass = Dimensional).

! DataType = real
! Dimension = 1
! DimensionValues = 1
DataArray_t<real, 1, 1> Reynolds =
{{
Data(real, 1, 1) = 1.554e+06 ;

DataClass_t DataClass = NondimensionalParameter ;
}} ;

DataArray_t<real, 1, 1> Reynolds_Velocity =
{{
Data(real, 1, 1) = 10. ;
}} ;

DataArray_t<real, 1, 1> Reynolds_Length =
{{
Data(real, 1, 1) = 2.3 ;
}} ;

DataArray_t<real, 1, 1> Reynolds_ViscosityKinematic =
{{
Data(real, 1, 1) = 1.48e-05 ;
}} ;

Reynolds contains the value of the Reynolds number, and the value of its DataClass qualifier
designates it as a nondimensional parameter. By conventions described in Annex A.4, the defin-
ing scales are contained in the associated entities Reynolds_Velocity, Reynolds_Length, and

42



AIAA R-101A-2005

Reynolds_ViscosityKinematic. Since each of these entities contain no qualifiers, global informa-
tion is used to decipher that they are all dimensional with mass, length, and time units of kilograms,
meters, and seconds. The structure parameters for each DataArray_t entity state that they contain
a real scalar.

If a user wanted to convey the dimensional units of the defining scales using optional qualifiers
of DataArray_t, then the last three entities in this example would have a form similar to that in
Example 5-B.

43



AIAA R-101A-2005

6 Hierarchical Structures

This section presents the structure-type definitions for the top levels of the CGNS hierarchy. As
stated in Section 2, the hierarchy is topologically based, where the overall organization is by zones.
All information pertaining to a given zone, including grid coordinates, flow solution, and other
related data, is contained within that zone’s structure entity. Figure 1 depicts this topologically
based hierarchy. The CGNS version number is described in Section 6.1. The CGNS database entry
level structure type is defined in Section 6.2, and the zone structure is defined in Section 6.3. This
section concludes with a discussion of globally applicable data.

6.1 CGNS Version

CGNS is an evolving standard. Although great care is taken to make CGNS databases backward-
compatible with previous versions whenever possible, new nodes and new features are still being
added which make them non-forward-compatible. To address this issue, each new version of the
standard is labeled with a version number which should be written in the file. This version number
corresponds to the version of the SIDS and is an essential part of the file containing the CGNS
database. The file can not be interpreted properly without knowledge of this version number.

Physically, this version number is located directly under the root node of the file. The SIDS-to-ADF
(or SIDS-to-HDF ) File Mapping Manual defines this location more precisely.

Historically, the version number was used to describe the version of the Mid-Level Library used to
write or modify the file. The corresponding node was thus named CGNSLibraryVersion_t. With
the advent of new libraries that can read and write CGNS databases, the node is now defined as
the version of the CGNS standard. The Mid-Level Library modifies its interpretation of node data
according to the CGNS version number, and other libraries should also.

6.2 CGNS Entry Level Structure Definition: CGNSBase_t

The highest level structure in a CGNS database is CGNSBase_t. It contains the cell dimension and
physical dimension of the computational grid and lists of zones and families making up the domain.
Globally applicable information, including a reference state, a set of flow equations, dimensional
units, time step or iteration information, and convergence history are also attached. In addition,
structures for describing or annotating the database are also provided; these same descriptive
mechanisms are provided for structures at all levels of the hierarchy.

CGNSBase_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

int CellDimension ; (r)
int PhysicalDimension ; (r)

BaseIterativeData_t BaseIterativeData ; (o)

44



AIAA R-101A-2005

List( Zone_t<CellDimension, PhysicalDimension> Zone1 ... ZoneN ) ; (o)

ReferenceState_t ReferenceState ; (o)

Axisymmetry_t Axisymmetry ; (o)

RotatingCoordinates_t RotatingCoordinates ; (o)

Gravity_t Gravity ; (o)

SimulationType_t SimulationType ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

FlowEquationSet_t<CellDimension> FlowEquationSet ; (o)

ConvergenceHistory_t GlobalConvergenceHistory ; (o)

List( IntegralData_t IntegralData1... IntegralDataN ) ; (o)

List( Family_t Family1... FamilyN ) ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, Zone_t, IntegralData_t, Family_t, and UserDe-
finedData_t lists are as shown; users may choose other legitimate names. Legitimate names
must be unique at this level and shall not include the names Axisymmetry, BaseItera-
tiveData, DataClass, DimensionalUnits, FlowEquationSet, GlobalConvergenceHistory,
Gravity, ReferenceState, RotatingCoordinates, or SimulationType.

2. The number of entities of type Zone_t defines the number of zones in the domain.
3. CellDimension and PhysicalDimension are the only required fields. The Descriptor_t,

Zone_t and IntegralData_t lists may be empty, and all other optional fields absent.

Note that we make the distinction between the following:

IndexDimension Number of different indices required to reference a node (e.g., 1 = i,
2 = i, j, 3 = i, j, k)

CellDimension Dimensionality of the cell in the mesh (e.g., 3 for a volume cell, 2 for a
face cell)

45



AIAA R-101A-2005

PhysicalDimension Number of coordinates required to define a node position (e.g., 1 for
1-D, 2 for 2-D, 3 for 3-D)

These three dimensions may differ depending on the mesh. For example, an unstructured triangular
surface mesh representing the wet surface of an aircraft will have:

• IndexDimension = 1 (always for unstructured)

• CellDimension = 2 (face elements)

• PhysicalDimension = 3 (needs x, y, z coordinates since it is a 3D surface)

For a structured zone, the quantities IndexDimension and CellDimension are always equal. For
an unstructured zone, IndexDimension always equals 1. Therefore, storing CellDimension at the
CGNSBase_t level will automatically define the IndexDimension value for each zone.

On the other hand we assume that all zones of the base have the same CellDimension, e.g., if
CellDimension is 3, all zones must be composed of 3D cells within the CGNSBase_t.

We need IndexDimension for both structured and unstructured zones in order to use original data
structures such as GridCoordinates_t, FlowSolution_t, DiscreteData_t, etc. CellDimension
is necessary to express the interpolants in ZoneConnectivity with an unstructured zone (mis-
match or overset connectivity). When the cells are bidimensional, two interpolants per node are
required, while when the cells are tridimensional, three interpolants per node must be provided.
PhysicalDimension becomes useful when expressing quantities such as the InwardNormalList in
the BC_t data structure. It’s possible to have a mesh where IndexDimension = 2 but the normal
vectors still require x, y, z components in order to be properly defined. Consider, for example, a
structured surface mesh in the 3D space.

Information about the number of time steps or iterations being recorded, and the time and/or
iteration values at each step, may be contained in the BaseIterativeData structure.

Data specific to each zone in a multizone case is contained in the list of Zone_t structure entities.

Reference data applicable to the entire CGNS database is contained in the ReferenceState struc-
ture; quantities such as Reynolds number and freestream Mach number are contained here (for
external flow problems).

Axisymmetry may be used to specify the axis of rotation and the circumferential extent for an
axisymmetric database.

If a rotating coordinate system is being used, the rotation center and rotation rate vector may be
specified using the RotatingCoordinates structure.

Gravity may be used to define the gravitational vector.

SimulationType is an enumeration type identifying the type of simulation.

SimulationType_t := Enumeration (
Null,
UserDefined,

46



AIAA R-101A-2005

TimeAccurate,
NonTimeAccurate ) ;

DataClass describes the global default for the class of data contained in the CGNS database. If
the CGNS database contains dimensional data (e.g. velocity with units of m/s), DimensionalUnits
may be used to describe the system of units employed.

FlowEquationSet contains a description of the governing flow equations associated with the entire
CGNS database. This structure contains information on the general class of governing equations
(e.g. Euler or Navier-Stokes), equation sets required for closure, including turbulence modeling and
equations of state, and constants associated with the equations.

DataClass, DimensionalUnits, ReferenceState and FlowEquationSet have special function in
the CGNS hierarchy. They are globally applicable throughout the database, but their precedence
may be superseded by local entities (e.g. within a given zone). The scope of these entities and the
rules for determining precedence are treated in Section 6.4.

Globally relevant convergence history information is contained in GlobalConvergenceHistory.
This convergence information includes total configuration forces, moments, and global residual and
solution-change norms taken over all the zones.

Miscellaneous global data may be contained in the IntegralData_t list. Candidates for inclusion
here are global forces and moments.

The Family_t data structure, defined in Section 12.6, is used to record geometry reference data. It
may also include boundary conditions linked to geometry patches. For the purpose of defining ma-
terial properties, families may also be defined for groups of elements. The family-mesh association
is defined under the Zone_t and BC_t data structures by specifying the family name corresponding
to a zone or a boundary patch.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

6.3 Zone Structure Definition: Zone_t

The Zone_t structure contains all information pertinent to an individual zone. This information
includes the zone type, the number of cells and vertices making up the grid in that zone, the
physical coordinates of the grid vertices, grid motion information, the family, the flow solution,
zone interface connectivity, boundary conditions, and zonal convergence history data. Zonal data
may be recorded at multiple time steps or iterations. In addition, this structure contains a reference
state, a set of flow equations and dimensional units that are all unique to the zone. For unstructured
zones, the element connectivity may also be recorded.

ZoneType_t := Enumeration(
Null,
Structured,
Unstructured,

47



AIAA R-101A-2005

UserDefined ) ;

Zone_t< int CellDimension, int PhysicalDimension > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

ZoneType_t ZoneType ; (r)

int[IndexDimension] VertexSize ; (r)
int[IndexDimension] CellSize ; (r)
int[IndexDimension] VertexSizeBoundary ; (o/d)

List( GridCoordinates_t<IndexDimension, VertexSize>
GridCoordinates MovedGrid1 ... MovedGridN ) ; (o)

List( Elements_t Elements1 ... ElementsN ) ; (o)

List( RigidGridMotion_t RigidGridMotion1 ... RigidGridMotionN ) ; (o)

List( ArbitraryGridMotion_t
ArbitraryGridMotion1 ... ArbitraryGridMotionN ) ; (o)

FamilyName_t FamilyName ; (o)

List( FlowSolution_t<IndexDimension, VertexSize, CellSize>
FlowSolution1 ... FlowSolutionN ) ; (o)

List( DiscreteData_t<IndexDimension, VertexSize, CellSize>
DiscreteData1 ... DiscreteDataN ) ; (o)

List( IntegralData_t IntegralData1 ... IntegralDataN ) ; (o)

ZoneGridConnectivity_t<IndexDimension, CellDimension>
ZoneGridConnectivity ; (o)

ZoneBC_t<IndexDimension, PhysicalDimension> ZoneBC ; (o)

ZoneIterativeData_t<NumberOfSteps> ZoneIterativeData ; (o)

ReferenceState_t ReferenceState ; (o)

RotatingCoordinates_t RotatingCoordinates ; (o)

DataClass_t DataClass ; (o)

48



AIAA R-101A-2005

DimensionalUnits_t DimensionalUnits ; (o)

FlowEquationSet_t<CellDimension> FlowEquationSet ; (o)

ConvergenceHistory_t ZoneConvergenceHistory ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)

int Ordinal ; (o)
} ;

Notes

1. Default names for the Descriptor_t, Elements_t, RigidGridMotion_t, ArbitraryGrid-
Motion_t, FlowSolution_t, DiscreteData_t, IntegralData_t, and UserDefinedData_t
lists are as shown; users may choose other legitimate names. Legitimate names must be
unique within a given instance of Zone_t and shall not include the names DataClass, Di-
mensionalUnits, FamilyName, FlowEquationSet, GridCoordinates, Ordinal, Reference-
State, RotatingCoordinates, ZoneBC, ZoneConvergenceHistory, ZoneGridConnectivity,
ZoneIterativeData, or ZoneType.

2. The original grid coordinates should have the name GridCoordinates. Default names for
the remaining entities in the GridCoordinates_t list are as shown; users may choose other
legitimate names, subject to the restrictions listed in the previous note.

3. ZoneType, VertexSize, and CellSize are the only required fields within the Zone_t struc-
ture.

Zone_t requires the parameters CellDimension and PhysicalDimension. CellDimension, along
with the type of zone, determines IndexDimension; if the zone type is Unstructured, IndexDi-
mension = 1, and if the zone type is Structured, IndexDimension = CellDimension. These three
structure parameters identify the dimensionality of the grid-size arrays. One or more of them are
passed on to the grid coordinates, flow solution, interface connectivity, boundary condition and
flow-equation description structures.

VertexSize is the number of vertices in each index direction, and CellSize is the number of cells
in each direction; for structured grids in 3-D, CellSize = VertexSize - [1,1,1]. VertexSize
is the number of vertices defining ‘the grid’ or the domain (i.e. without rind points); CellSize is
the number of cells on the interior of the domain. These two grid-size arrays are passed onto the
grid-coordinate, flow-solution and discrete-data substructures.

If the nodes are sorted between internal nodes and boundary nodes, then the optional parameter
VertexSizeBoundary must be set equal to the number of boundary nodes. If the nodes are sorted,
the grid coordinate vector must first include the boundary nodes, followed by the internal nodes.
By default, VertexSizeBoundary equals zero, meaning that the nodes are unsorted. This option
is only useful for unstructured zones. For structured zones, VertexSizeBoundary always equals 0
in all index directions.

The GridCoordinates_t structure defines “the grid”; it contains the physical coordinates of the
grid vertices, and may optionally contain physical coordinates of rind or ghost points. The original

49



AIAA R-101A-2005

grid is contained in GridCoordinates. Additional GridCoordinates_t data structures are allowed,
to store the grid at multiple time steps or iterations.

When the grid nodes are sorted, the DataArray_t in GridCoordinates_t lists first the data for
the boundary nodes, then the data for the internal nodes.

The Elements_t data structure contains unstructured elements data such as connectivity, element
type, parent elements, etc.

The RigidGridMotion_t and ArbitraryGridMotion_t data structures contain information defin-
ing rigid and arbitrary (i.e., deforming) grid motion.

FamilyName identifies to which family a zone belongs. Families may be used to define material
properties.

Flow-solution quantities are contained in the list of FlowSolution_t structures. Each instance of
the FlowSolution_t structure is only allowed to contain data at a single grid location (vertices,
cell-centers, etc.); multiple FlowSolution_t structures are provided to store flow-solution data at
different grid locations, to record different solutions at the same grid location, or to store solutions
at multiple time steps or iterations. These structures may optionally contain solution data defined
at rind points.

Miscellaneous discrete field data is contained in the list of DiscreteData_t structures. Candidate
information includes residuals, fluxes and other related discrete data that is considered auxiliary to
the flow solution. Likewise, miscellaneous zone-specific global data, other than reference-state data
and convergence history information, is contained in the list of IntegralData_t structures. It is
envisioned that these structures will be seldom used in practice but are provided nonetheless.

For unstructured zones only, the node-based DataArray_t vectors (GridLocation = Vertex) in
FlowSolution_t or DiscreteData_t must follow exactly the same ordering as the GridCoordi-
nates vector. If the nodes are sorted (VertexSizeBoundary 6= 0), the data on the boundary nodes
must be listed first, followed by the data on the internal nodes. Note that the order in which
the node-based data are recorded must follow exactly the node ordering in GridCoordinates_t,
to be able to associate the data to the correct nodes. For element-based data (GridLocation =
CellCenter), the FlowSolution_t or DiscreteData_t data arrays must list the data values for
each element, in the same order as the elements are listed in ElementConnectivity.

All interface connectivity information, including identification of overset-grid holes, for a given zone
is contained in ZoneGridConnectivity.

All boundary condition information pertaining to a zone is contained in ZoneBC_t.

The ZoneIterativeData_t data structure may be used to record pointers to zonal data at multiple
time steps or iterations.

Reference-state data specific to an individual zone is contained in the ReferenceState structure.

RotatingCoordinates may be used to specify the rotation center and rotation rate vector of a
rotating coordinate system.

DataClass defines the zonal default for the class of data contained in the zone and its substructures.
If a zone contains dimensional data, DimensionalUnits may be used to describe the system of
dimensional units employed.

50



AIAA R-101A-2005

If a set of flow equations are specific to a given zone, these may be described in FlowEquationSet.
For example, if a single zone within the domain is inviscid, whereas all other are turbulent, then
this zone-specific equation set could be used to describe the special zone.

DataClass, DimensionalUnits, ReferenceState and FlowEquationSet have special function in
the hierarchy. They are applicable throughout a given zone, but their precedence may be superseded
by local entities contained in the zone’s substructures. If any of these entities are present within a
given instance of Zone_t, they take precedence over the corresponding global entities contained in
database’s CGNSBase_t entity. These precedence rules are further discussed in Section 6.4.

Convergence history information applicable to the zone is contained in ZoneConvergenceHistory;
this includes residual and solution-change norms.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

Ordinal is user-defined and has no restrictions on the values that it can contain. It is included
for backward compatibility to assist implementation of the CGNS system into applications whose
I/O depends heavily on the numbering of zones. Since there are no restrictions on the values
contained in Ordinal (or that Ordinal is even provided), there is no guarantee that the zones in
an existing CGNS database will have sequential values from 1 to N without holes or repetitions.
Use of Ordinal is discouraged and is on a user-beware basis.

6.4 Precedence Rules and Scope Within the Hierarchy

The dependence of a structure entity’s information on data contained at higher levels of the hierar-
chy is typically explicitly expressed through structure parameters. For example, all arrays within
Zone_t depend on the dimensionality of the computational grid. This dimensionality is passed
down to a Zone_t entity through a structure parameter in the definition of Zone_t.

We have established an alternate dependency for a limited number of entities that is not explicitly
stated in the structure type definitions. These special situations include entities for describing data
class, system of dimensional units, reference states and flow equation sets. At each level of the
hierarchy (where appropriate), entities for describing this information are defined, and if present
they take precedence over all corresponding information existing at higher levels of the CGNS
hierarchy. Essentially, we have established globally applicable data with provisions for recursively
overriding it with local data.

Specifically, the entities that follow this alternate dependency are:

• FlowEquationSet_t FlowEquationSet,

• ReferenceState_t ReferenceState,

• DataClass_t DataClass,

• DimensionalUnits_t DimensionalUnits.

51



AIAA R-101A-2005

FlowEquationSet contains a description of the governing flow equations (see Section 10); Refer-
enceState describes a set of reference state flow conditions (see Section 12.1); DataClass defines
the class of data (e.g. dimensional or nondimensional—see Section 4.1 and Section 5); and Dimen-
sionalUnits specifies the system of units used for dimensional data (see Section 4.3).

All of these entities may be defined within the highest level CGNSBase_t structure, and if present
in a given database, establish globally applicable information; these may also be considered to be
global defaults. Each of these four entities may also be defined within the Zone_t structure. If
present in a given instance of Zone_t, they supersede the global data and establish new defaults
which apply only within that zone.

For example, if a different set of flow equations is solved within a given zone than is solved in
the rest of the flowfield, then this can be conveyed through FlowEquationSet. In this case, one
FlowEquationSet entity would be placed within CGNSBase_t to state the globally applicable flow
equations, and a second FlowEquationSet entity would be placed within the given zone (within its
instance of Zone_t); this second FlowEquationSet entity supersedes the first only within the given
zone.

In addition to its presence in CGNSBase_t and Zone_t, ReferenceState may also be defined within
the boundary-condition structure types to establish reference states applicable to one or more
boundary-condition patches. Actually, ReferenceState entities can be defined at several levels
of the boundary-condition hierarchy to allow flexibility in setting the appropriate reference state
conditions (see Section 9.1 and subsequent sections).

DataClass and DimensionalUnits are used within entities describing data arrays (see the DataAr-
ray_t type definition in Section 5.1). They classify the data and specify its system of units if di-
mensional. If these entities are absent from a particular instance of DataArray_t, the information
is derived from appropriate global data. DataClass and DimensionalUnits are also declared in
all intermediate structure types that directly or indirectly contain DataArray_t entities. Examples
include GridCoordinates_t (Section 7.1), FlowSolution_t (Section 7.7), BC_t (Section 9.3) and
ReferenceState_t (Section 12.1). The same precedence rules apply—lower-level entities supersede
higher-level entities.

It is envisioned that in practice, the use of globally applicable data will be the norm rather than the
exception. It provides a measure of economy throughout the CGNS database in many situations.
For example, when creating a database where the vast majority of data arrays are dimensional and
use a consistent set of units, DataClass and DimensionalUnits can be set appropriately at the
CGNSBase_t level and thereafter omitted when outputting data.

52



AIAA R-101A-2005

7 Grid Coordinates, Elements, and Flow Solutions

This section defines structure types for describing the grid coordinates, element data, and flow
solution data pertaining to a zone. Entities of each of the structure types defined in this section
are contained in the Zone_t structure (see Section 6.3).

7.1 Grid Coordinates Structure Definition: GridCoordinates_t

The physical coordinates of the grid vertices are described by the GridCoordinates_t structure.
This structure contains a list for the data arrays of the individual components of the position
vector. It also provides a mechanism for identifying rind-point data included within the position-
vector arrays.

GridCoordinates_t< int IndexDimension, int VertexSize[IndexDimension] > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

Rind_t<IndexDimension> Rind ; (o/d)

List( DataArray_t<DataType, IndexDimension, DataSize[]>
DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of GridCoordinates_t and shall not include the names DataClass, Dimen-
sionalUnits, or Rind.

2. There are no required fields for GridCoordinates_t. Rind has a default if absent; the default
is equivalent to having a Rind structure whose RindPlanes array contains all zeros (see
Section 4.8).

3. The structure parameter DataType must be consistent with the data stored in the DataAr-
ray_t substructures (see Section 5.1).

4. For unstructured zones, rind planes are not meaningful and should not be used.

GridCoordinates_t requires two structure parameters: IndexDimension identifies the dimension-
ality of the grid-size arrays, and VertexSize is the number of vertices in each index direction

53



AIAA R-101A-2005

excluding rind points. For unstructured zones, IndexDimension is always 1 and VertexSize is the
total number of vertices.

The grid-coordinates data is stored in the list of DataArray_t entities; each DataArray_t structure
entity may contain a single component of the position vector (e.g. three separate DataArray_t
entities are used for x, y, and z). Standardized data-name identifiers for the grid coordinates are
described in Annex A.

Rind is an optional field that indicates the number of rind planes included in the grid-coordinates
data for structured zones. If Rind is absent, then the DataArray_t structure entities contain only
‘core’ vertices of a zone; ‘core’ refers to all interior and bounding vertices of a zone – VertexSize
is the number of ‘core’ vertices. ‘Core’ vertices in a zone are assumed to begin at [1,1,1] (for a
structured zone in 3-D) and end at VertexSize. If Rind is present, it will provide information on
the number of ‘rind’ points in addition to the ‘core’ points that are contained in the DataArray_t
structures.

DataClass defines the default class for data contained in the DataArray_t entities. For dimensional
grid coordinates, DimensionalUnits may be used to describe the system of units employed. If
present, these two entities take precedence over the corresponding entities at higher levels of the
CGNS hierarchy. The rules for determining precedence of entities of this type are discussed in
Section 6.4. An example that uses these grid-coordinate defaults is shown in Section 7.2.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

FUNCTION DataSize[]:

return value: one-dimensional int array of length IndexDimension
dependencies: IndexDimension, VertexSize[], Rind

GridCoordinates_t requires a single structure function, named DataSize, to identify the array
sizes of the grid-coordinates data. A function is required for the following reasons:

• the entire grid, including both ‘core’ and ‘rind’ points, is stored in the DataArray_t entities;

• the DataArray_t structure is simple in that it doesn’t know anything about ‘core’ versus
‘rind’ data; it just knows that it contains data of some given size;

• to make all the DataArray_t entities syntactically consistent in their size (i.e. by syntax
entities containing x, y and z must have the same dimensionality and dimension sizes), the
size of the array is passed onto the DataArray_t structure as a parameter.

if (Rind is absent) then
{
DataSize[] = VertexSize[] ;
}

else if (Rind is present) then
{
DataSize[] = VertexSize[] + [a + b,...] ;
}

54



AIAA R-101A-2005

where RindPlanes = [a,b,...] (see Section 4.8 for the definition of RindPlanes).

7.2 Grid Coordinates Examples

This section contains examples of grid coordinates. These examples show the storage of the grid-
coordinate data arrays, as well as different mechanisms for describing the class of data and the
system of units or normalization.

Example 7-A: Cartesian Coordinates for a 2-D Structured Grid

Cartesian coordinates for a 2-D grid of size 17× 33; the data arrays include only core vertices, and
the coordinates are in units of feet.

! IndexDimension = 2
! VertexSize = [17,33]
GridCoordinates_t<2, [17,33]> GridCoordinates =
{{
DataArray_t<real, 2, [17,33]> CoordinateX =
{{
Data(real, 2, [17,33]) = ((x(i,j), i=1,17), j=1,33) ;

DataClass_t DataClass = Dimensional ;

DimensionalUnits_t DimensionalUnits =
{{
MassUnits = Null ;
LengthUnits = Foot ;
TimeUnits = Null ;
TemperatureUnits = Null ;
AngleUnits = Null ;
}} ;

}} ;

DataArray_t<real, 2, [17,33]> CoordinateY =
{{
Data(real, 2, [17,33]) = ((y(i,j), i=1,17), j=1,33) ;

DataClass_t DataClass = Dimensional ;

DimensionalUnits_t DimensionalUnits =
{{
MassUnits = Null ;
LengthUnits = Foot ;
TimeUnits = Null ;
TemperatureUnits = Null ;
AngleUnits = Null ;

55



AIAA R-101A-2005

}} ;
}} ;

}} ;

From Annex A, the identifiers for x and y are CoordinateX and CoordinateY, respectively, and
both have a data type of real. The value of DataClass in CoordinateX and CoordinateY indicate
the data is dimensional, and DimensionalUnits specifies the appropriate units are feet. The
DimensionalExponents entity is absent from both CoordinateX and CoordinateY; the information
that x and y are lengths can be inferred from the data-name identifier conventions in Annex A.1.

Note that FORTRAN multidimensional array indexing is used to store the data; this is reflected in
the FORTRAN-like implied do-loops for x(i,j) and y(i,j).

Since the dimensional units for both x and y are the same, an alternate approach is to set the data
class and system of units using DataClass and DimensionalUnits at the GridCoordinates_t level,
and eliminate this information from each instance of DataArray_t.

GridCoordinates_t<2, [17,33]> GridCoordinates =
{{
DataClass_t DataClass = Dimensional ;

DimensionalUnits_t DimensionalUnits =
{{
MassUnits = Null ;
LengthUnits = Foot ;
TimeUnits = Null ;
TemperatureUnits = Null ;
AngleUnits = Null ;
}} ;

DataArray_t<real, 2, [17,33]> CoordinateX =
{{
Data(real, 2, [17,33]) = ((x(i,j), i=1,17), j=1,33) ;
}} ;

DataArray_t<real, 2, [17,33]> CoordinateY =
{{
Data(real, 2, [17,33]) = ((y(i,j), i=1,17), j=1,33) ;
}} ;

}} ;

Since the DataClass and DimensionalUnits entities are not present in CoordinateX and Coor-
dinateY, the rules established in Section 5.2.1 dictate that DataClass and DimensionalUnits
specified at the GridCoordinates_t level be used to retrieve the information.

56



AIAA R-101A-2005

Example 7-B: Cylindrical Coordinates for a 3-D Structured Grid

Cylindrical coordinates for a 3-D grid whose core size is 17 × 33 × 9. The grid contains a single
plane of rind on the minimum and maximum k faces. The coordinates are nondimensional.

! IndexDimension = 3
! VertexSize = [17,33,9]
GridCoordinates_t<3, [17,33,9]> GridCoordinates =
{{
Rind_t<3> Rind =
{{
int[6] RindPlanes = [0,0,0,0,1,1] ;
}} ;

! DataType = real
! IndexDimension = 3
! DataSize = VertexSize + [0,0,2] = [17,33,11]
DataArray_t<real, 3, [17,33,11]> CoordinateRadius =
{{
Data(real, 3, [17,33,11]) = (((r(i,j,k), i=1,17), j=1,33), k=0,10) ;

DataClass_t DataClass = NormalizedByUnknownDimensional ;
}} ;

DataArray_t<real, 3, [17,33,11]> CoordinateZ = {{ }} ;
DataArray_t<real, 3, [17,33,11]> CoordinateTheta = {{ }} ;
}} ;

The value of RindPlanes specifies two rind planes on the minimum and maximum k faces. These
rind planes are reflected in the structure function DataSize which is equal to the number of core
vertices plus two in the k dimension. The value of DataSize is passed to the DataArray_t entities.
The value of DataClass indicates the data is nondimensional. Note that if DataClass is set as
NormalizedByUnknownDimensional at a higher level (CGNSBase_t or Zone_t), then it is not needed
here.

Note that the entities CoordinateZ and CoordinateTheta are abbreviated.

Example 7-C: Cartesian Coordinates for a 3-D Unstructured Grid

Cartesian grid coordinates for a 3-D unstructured zone where VertexSize is 15.

GridCoordinates_t<1, 15> GridCoordinates =
{{

! DataType = real
! IndexDimension = 1
! DataSize = VertexSize = 15

57



AIAA R-101A-2005

DataArray_t<real, 1, 15> CoordinateX =
{{
Data(real, 1, 15) = (x(i), i=1,15) ;
}} ;

DataArray_t<real, 1, 15> CoordinateY =
{{
Data(real, 1, 15) = (y(i), i=1,15) ;
}} ;

DataArray_t<real, 1, 15> CoordinateZ =
{{
Data(real, 1, 15) = (z(i), i=1,15) ;
}} ;

}} ;

7.3 Elements Structure Definition: Elements_t

The Elements_t data structure is required for unstructured zones, and contains the element con-
nectivity data, the element type, the element range, the parent elements data, and the number of
boundary elements.

Elements_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

IndexRange_t ElementRange ; (r)

int ElementSizeBoundary ; (o/d)

ElementType_t ElementType ; (r)

DataArray_t<int, 1, ElementDataSize> ElementConnectivity ; (r)

DataArray_t<int, 2, [ElementSize, 4]> ParentData; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance
of Elements_t and shall not include the names ElementConnectivity, ElementRange, or
ParentData.

58



AIAA R-101A-2005

2. IndexRange_t, ElementType_t, and ElementConnectivity_t are the required fields within
the Elements_t structure.

ElementRange contains the index of the first and last elements defined in ElementConnectivity.
The elements are indexed with a global numbering system, starting at 1, for all element sections
under a given Zone_t data structure. They are also listed as a continuous list of element numbers
within any single element section. Therefore the number of elements in a section is:

ElementSize = ElementRange.end - ElementRange.start + 1

The element indices are used for the boundary condition and zone connectivity definition.

ElementSizeBoundary indicates if the elements are sorted, and how many boundary elements are
recorded. By default, ElementSizeBoundary is set to zero, indicating that the elements are not
sorted. If the elements are sorted, ElementSizeBoundary is set to the number of elements at the
boundary. Consequently:

ElementSizeInterior = ElementSize - ElementSizeBoundary

ElementType_t is an enumeration of the supported element types:

ElementType_t := Enumeration(
Null, NODE, BAR_2, BAR_3,
TRI_3, TRI_6, QUAD_4, QUAD_8, QUAD_9,
TETRA_4, TETRA_10, PYRA_5, PYRA_14,
PENTA_6, PENTA_15, PENTA_18,
HEXA_8, HEXA_20, HEXA_27, MIXED, NGON_n, UserDefined );

Section 3.3 illustrates the convention for element numbering.

For all element types except type MIXED, ElementConnectivity contains the list of nodes for each
element. If the elements are sorted, then it must first list the connectivity of the boundary elements,
then that of the interior elements.

ElementConnectivity = Node11, Node21, ... NodeN1,
Node12, Node22, ... NodeN2,
...
Node1M, Node2M, ... NodeNM

When the section ElementType is MIXED, the data array ElementConnectivity contains one extra
integer per element, to hold each individual element type:

ElementConnectivity = Etype1, Node11, Node21, ... NodeN1,
Etype2, Node12, Node22, ... NodeN2,
...
EtypeM, Node1M, Node2M, ... NodeNM

59



AIAA R-101A-2005

ElementDataSize indicates the size (number of integers) of the array ElementConnectivity. For
all element types except type MIXED, the ElementDataSize is given by:

ElementDataSize = ElementSize * NPE[ElementType]

In the case of MIXED element section, ElementDataSize is given by:

ElementDataSize =
end∑

n=start

(NPE[ElementTypen] + 1)

NPE[ElementType] is a function returning the number of nodes for the given ElementType. For
example, NPE[HEXA_8]=8.

For face elements in 3D, or bar element in 2D, four more data may be saved for each element —
the corresponding parents’ element number, and the face position within these parent elements. At
the boundaries, the second parent is set to zero.

NGON_n is used to express a polygon of n nodes. In order to record the number of nodes of any
ngons, the ElementType must be set to NGON_n + Nnodes. For example, for an element type NGON_n
composed of 25 nodes, one would set the ElementType to NGON_n + 25.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

7.4 Elements Examples

This section contains two examples of elements definition in CGNS. In both cases, the unstructured
zone contains 15 tetrahedral and 10 hexahedral elements.

Example 7-D: Unstructured Elements, Separate Element Types

In this first example, the elements are written in two separate sections, one for the tetrahedral
elements and one for the hexahedral elements.

Zone_t UnstructuredZone =
{{
Elements_t TetraElements =
{{
IndexRange_t ElementRange = [1,15] ;

int ElementSizeBoundary = 10 ;

ElementType_t ElementType = TETRA_4 ;

DataArray_t<int, 1, NPE[TETRA_4]×15> ElementConnectivity =

60



AIAA R-101A-2005

{{
Data(int, 1, NPE[TETRA_4]×15) = (node(i,j), i=1,NPE[TETRA_4], j=1,15) ;
}} ;

}} ;
Elements_t HexaElements =
{{
IndexRange_t ElementRange = [16,25] ;

int ElementSizeBoundary = 0 ;

ElementType_t ElementType = HEXA_8 ;

DataArray_t<int, 1, NPE[HEXA_8]×10> ElementConnectivity =
{{
Data(int, 1, NPE[HEXA_8]×10) = (node(i,j), i=1,NPE[HEXA_8], j=1,10) ;
}} ;

}} ;
}} ;

Example 7-E: Unstructured Elements, Element Type MIXED

In this second example, the same unstructured zone described in Example 7-D is written in a single
element section of type MIXED (i.e., an unstructured grid composed of mixed elements).

Zone_t UnstructuredZone =
{{
Elements_t MixedElementsSection =
{{
IndexRange_t ElementRange = [1,25] ;

ElementType_t ElementType = MIXED ;

DataArray_t<int, 1, ElementDataSize> ElementConnectivity =
{{
Data(int, 1, ElementDataSize) = (etype(j),(node(i,j),

i=1,NPE[etype(j)]), j=1,25) ;
}} ;

}} ;
}} ;

7.5 Axisymmetry Structure Definition: Axisymmetry_t

The Axisymmetry_t data structure allows recording the axis of rotation and the angle of rotation
around this axis for a two-dimensional dataset that represents an axisymmetric database.

61



AIAA R-101A-2005

Axisymmetry_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

DataArray_t<real,1,2> AxisymmetryReferencePoint ; (r)
DataArray_t<real,1,2> AxisymmetryAxisVector ; (r)
DataArray_t<real,1,1> AxisymmetryAngle ; (o)
DataArray_t<char,2,[32,2]> CoordinateNames ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance of
Axisymmetry_t and shall not include the names AxisymmetryAngle, AxisymmetryAxisVec-
tor, AxisymmetryReferencePoint, CoordinateNames, DataClass, or DimensionalUnits.

2. AxisymmetryReferencePoint and AxisymmetryAxisVector are the required fields within the
Axisymmetry_t structure.

AxisymmetryReferencePoint specifies the origin used for defining the axis of rotation.

AxisymmetryAxisVector contains the direction cosines of the axis of rotation, through the Ax-
isymmetryReferencePoint. For example, for a 2-D dataset defined in the (x, y) plane, if Axisym-
metryReferencePoint contains (0, 0) and AxisymmetryAxisVector contains (1, 0), the x-axis is
the axis of rotation.

AxisymmetryAngle allows specification of the circumferential extent about the axis of rotation. If
this angle is undefined, it is assumed to be 360◦.

CoordinateNames may be used to specify the first and second coordinates used in the definition
of AxisymmetryReferencePoint and AxisymmetryAxisVector. If not found, it is assumed that
the first coordinate is CoordinateX and the second is CoordinateY. The coordinates given under
CoordinateNames, or implied by using the default, must correspond to those found under GridCo-
ordinates_t.

DataClass defines the default class for numerical data contained in the DataArray_t entities. For
dimensional data, DimensionalUnits may be used to describe the system of units employed. If
present, these two entities take precedence over the corresponding entities at higher levels of the
CGNS hierarchy, following the standard precedence rules.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

62



AIAA R-101A-2005

7.6 Rotating Coordinates Structure Definition: RotatingCoordinates_t

The RotatingCoordinates_t data structure is used to record the rotation center and rotation rate
vector of a rotating coordinate system.

RotatingCoordinates_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

DataArray_t<real,1,PhysicalDimension> RotationCenter ; (r)
DataArray_t<real,1,PhysicalDimension> RotationRateVector ; (r)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance
of RotatingCoordinates_t and shall not include the names DataClass, DimensionalUnits,
RotationCenter, or RotationRateVector.

2. RotationCenter and RotationRateVector are the required fields within the RotatingCo-
ordinates_t structure.

RotationCenter specifies the coordinates of the center of rotation, and RotationRateVector spec-
ifies the components of the angular velocity of the grid about the center of rotation. Together, they
define the angular velocity vector. The direction of the angular velocity vector specifies the axis of
rotation, and its magnitude specifies the rate of rotation.

For example, for the common situation of rotation about the x-axis, RotationCenter would be
specified as any point on the x-axis, like (0, 0, 0). RotationRateVector would then be specified as
(ω,0,0), where ω is the rotation rate. Using the right-hand rule, ω would be positive for clockwise
rotation (looking in the +x direction), and negative for counter-clockwise rotation.

Note that for a rotating coordinate system, the axis of rotation is defined in the inertial frame
of reference, while the grid coordinates stored using the GridCoordinates_t data structure are
relative to the rotating frame of reference.

DataClass defines the default class for data contained in the DataArray_t entities. For dimensional
data, DimensionalUnits may be used to describe the system of units employed. If present, these
two entities take precedence over the corresponding entities at higher levels of the CGNS hierarchy,
following the standard precedence rules.

63



AIAA R-101A-2005

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

If rotating coordinates are used, it is useful to store variables relative to the rotating frame. Stan-
dardized data-name identifiers should be used for these variables, as defined for flow-solution quan-
tities in Annex A.

7.7 Flow Solution Structure Definition: FlowSolution_t

The flow solution within a given zone is described by the FlowSolution_t structure. This structure
contains a list for the data arrays of the individual flow-solution variables, as well as identifying the
grid location of the solution. It also provides a mechanism for identifying rind-point data included
within the data arrays.

FlowSolution_t< int IndexDimension, int VertexSize[IndexDimension],
int CellSize[IndexDimension] > :=

{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

GridLocation_t GridLocation ; (o/d)

Rind_t<IndexDimension> Rind ; (o/d)

List( DataArray_t<DataType, IndexDimension, DataSize[]>
DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within a
given instance of FlowSolution_t and shall not include the names DataClass, Dimension-
alUnits, GridLocation, or Rind.

2. There are no required fields for FlowSolution_t. GridLocation has a default of Vertex if
absent. Rind also has a default if absent; the default is equivalent to having an instance of
Rind whose RindPlanes array contains all zeros (see Section 4.8).

3. The structure parameter DataType must be consistent with the data stored in the DataAr-
ray_t structure entities (see Section 5.1); DataType is real for all flow-solution identifiers
defined in Annex A.

64



AIAA R-101A-2005

4. For unstructured zones: rind planes are not meaningful and should not be used; GridLoca-
tion options are limited to Vertex or CellCenter, meaning that solution data may only be
expressed at these locations; and the data arrays must follow the node ordering if GridLoca-
tion = Vertex, and the element ordering if GridLocation = CellCenter.

FlowSolution_t requires three structure parameters; IndexDimension identifies the dimensionality
of the grid-size arrays, and VertexSize and CellSize are the number of ‘core’ vertices and cells,
respectively, in each index direction. For unstructured zones, IndexDimension is always 1.

The flow solution data is stored in the list of DataArray_t entities; each DataArray_t structure
entity may contain a single component of the solution vector. Standardized data-name identifiers
for the flow-solution quantities are described in Annex A. The field GridLocation specifies the
location of the solution data with respect to the grid; if absent, the data is assumed to coincide with
grid vertices (i.e. GridLocation = Vertex). All data within a given instance of FlowSolution_t
must reside at the same grid location.

Rind is an optional field for structured zones that indicates the number of rind planes included in
the data. Its purpose and function are identical to those described in Section 7.1. Note, however,
that the Rind in this structure is independent of the Rind contained in GridCoordinates_t. They
are not required to contain the same number of rind planes. Also, the location of any flow-solution
rind points is assumed to be consistent with the location of the ‘core’ flow solution points (e.g. if
GridLocation = CellCenter, rind points are assumed to be located at fictitious cell centers).

DataClass defines the default class for data contained in the DataArray_t entities. For dimensional
flow solution data, DimensionalUnits may be used to describe the system of units employed. If
present these two entities take precedence over the corresponding entities at higher levels of the
CGNS hierarchy. The rules for determining precedence of entities of this type are discussed in
Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

FUNCTION DataSize[]:

return value: one-dimensional int array of length IndexDimension
dependencies: IndexDimension, VertexSize[], CellSize[], GridLocation, Rind

The function DataSize[] is the size of flow solution data arrays. If Rind is absent then DataSize
represents only the ‘core’ points; it will be the same as VertexSize or CellSize depending on
GridLocation. The definition of the function DataSize[] is as follows:

if (Rind is absent) then
{
if (GridLocation = Vertex) or (GridLocation is absent)
{
DataSize[] = VertexSize[] ;
}

65



AIAA R-101A-2005

else if (GridLocation = CellCenter) then
{
DataSize[] = CellSize[] ;
}

}
else if (Rind is present) then
{
if (GridLocation = Vertex) or (GridLocation is absent) then
{
DataSize[] = VertexSize[] + [a + b,...] ;
}

else if (GridLocation = CellCenter)
{
DataSize[] = CellSize[] + [a + b,...] ;
}

}

where RindPlanes = [a,b,...] (see Section 4.8 for the definition of RindPlanes).

7.8 Flow Solution Example

This section contains an example of the flow solution entity, including the designation of grid
location and rind planes and data-normalization mechanisms.

Example 7-F: Flow Solution

Conservation-equation variables (ρ, ρu, ρv and ρe0) for a 2-D grid of size 11×5. The flowfield is cell-
centered with two planes of rind data. The density, momentum and stagnation energy (ρe0) data is
nondimensionalized with respect to a freestream reference state whose quantities are dimensional.
The freestream density and pressure are used for normalization; these values are 1.226 kg/m3 and
1.0132×105 N/m2 (standard atmosphere conditions). The data-name identifier conventions for the
conservation-equation variables are Density, MomentumX, MomentumY and EnergyStagnationDen-
sity.

! IndexDimension = 2
! VertexSize = [11,5]
! CellSize = [10,4]
FlowSolution_t<2, [11,5], [10,4]> FlowExample =
{{
GridLocation_t GridLocation = CellCenter ;

Rind_t<2> Rind =
{{
int[4] RindPlanes = [2,2,2,2] ;
}} ;

66



AIAA R-101A-2005

DataClass_t DataClass = NormalizedByDimensional ;

DimensionalUnits_t DimensionalUnits =
{{
MassUnits = Kilogram ;
LengthUnits = Meter ;
TimeUnits = Second ;
TemperatureUnits = Null ;
AngleUnits = Null ;
}} ;

! DataType = real
! Dimension = 2
! DataSize = CellSize + [4,4] = [14,8]
DataArray_t<real, 2, [14,8]> Density =
{{
Data(real, 2, [14,8]) = ((rho(i,j), i=-1,12), j=-1,6) ;

DataConversion_t DataConversion =
{{
ConversionScale = 1.226 ;
ConversionOffset = 0 ;
}} ;

DimensionalExponents_t DimensionalExponents =
{{
MassExponent = +1 ;
LengthExponent = -3 ;
TimeExponent = 0 ;
TemperatureExponent = 0 ;
AngleExponent = 0 ;
}} ;

}} ;

DataArray_t<real, 2, [14,8]> MomentumX =
{{
Data(real, 2, [14,8]) = ((rho_u(i,j), i=-1,12), j=-1,6) ;

DataConversion_t DataConversion =
{{
ConversionScale = 352.446 ;
ConversionOffset = 0 ;
}} ;

}} ;

67



AIAA R-101A-2005

DataArray_t<real, 2, [14,8]> MomentumY =
{{
Data(real, 2, [14,8]) = ((rho_v(i,j), i=-1,12), j=-1,6) ;

DataConversion_t DataConversion =
{{
ConversionScale = 352.446 ;
ConversionOffset = 0 ;
}} ;

}} ;

DataArray_t<real, 2, [14,8]> EnergyStagnationDensity =
{{
Data(real, 2, [14,8]) = ((rho_e0(i,j), i=-1,12), j=-1,6) ;

DataConversion_t DataConversion =
{{
ConversionScale = 1.0132e+05 ;
ConversionOffset = 0 ;
}} ;

}} ;
}} ;

The value of GridLocation indicates the data is at cell centers, and the value of RindPlanes
specifies two rind planes on each face of the zone. The resulting value of the structure function
DataSize is the number of cells plus four in each coordinate direction; this value is passed to each
of the DataArray_t entities.

Since the data are all nondimensional and normalized by dimensional reference quantities, this
information is stated in DataClass and DimensionalUnits at the FlowSolution_t level rather
than attaching the appropriate DataClass and DimensionalUnits to each DataArray_t entity. It
could possibly be at even higher levels in the heirarchy. The contents of DataConversion are in
each case the denominator of the normalization; this is ρ∞ for density,

√
p∞ρ∞ for momentum, and

p∞ for stagnation energy. The dimensional exponents are specified for density. For all the other
data, the dimensional exponents are to be inferred from the data-name identifiers.

Note that no information is provided to identify the actual reference state or indicate that it is
freestream. This information is not needed for data manipulations involving renormalization or
changing the units of the converted raw data.

68



AIAA R-101A-2005

8 Multizone Interface Connectivity

This section defines structures for describing multizone interface connectivity for 1-to-1 abutting,
mismatched abutting, and overset type interfaces. The different types of zone interfaces are de-
scribed in Section 3.4. All interface connectivity information pertaining to a given zone is grouped
together in a ZoneGridConnectivity_t structure entity; this in turn is contained in a zone struc-
ture entity (see the definition of Zone_t in Section 6.3).

Before presentation of the structure definitions, a few design features require comment. All indices
used to describe interfaces are the dimensionality (IndexDimension) of the grid, even when they
are used to describe lower-dimensional zonal boundaries for abutting interfaces. The alternative
for structured zones that was not chosen is to use lower-dimensional indices for lower-dimensional
interfaces (e.g. for a 3-D grid, use two-dimensional indices for describing grid planes that are
interfaces). Both alternatives offer trade-offs. The lower-dimensional indices require cyclic notation
conventions and additional identification of face location; whereas, full-dimensional indices result
in one redundant index component when describing points along a grid plane. We decided that
full-dimensional indices would be more usable and less error prone in actual implementation.

A major consequence of this decision is that connectivity information for describing mismatched
abutting interfaces and overset interfaces can be merged into a single structure, GridConnectiv-
ity_t (see Section 8.4 below). In fact, this single structure type can be used to describe all zonal
interfaces.

A second design choice was to duplicate all 1-to-1 abutting interface information within the CGNS
database. It is possible to describe a given 1-to-1 interface with a single set of connectivity data.
In contrast, mismatched and overset interfaces require different connectivity information when the
roles of receiver and donor zones are interchanged. Therefore, a given mismatched or overset
interface requires two sets of connectivity data within the database. The decision to force two sets
of connectivity data (one contained in each of the Zone_t entities for the two adjacent zones) for
each 1-to-1 interface makes the connectivity structures for all interface types look and function
similarly. It also fits better with the zone-by-zone hierarchy chosen for the CGNS database. The
minor penalty in data duplication was deemed worth the advantages gained.

Note that it is a CGNS design intent that a given zone boundary segment or location should at
most be defined (or covered) by either a boundary condition or a multizone interface connectivity,
but not by both.

8.1 Zonal Connectivity Structure Definition: ZoneGridConnectivity_t

All multizone interface grid connectivity information pertaining to a given zone is contained in
the ZoneGridConnectivity_t structure. This includes abutting interfaces (1-to-1 and general
mismatched), overset-grid interfaces, and overset-grid holes.

ZoneGridConnectivity_t< int IndexDimension, int CellDimension > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

69



AIAA R-101A-2005

List( GridConnectivity1to1_t<IndexDimension>
GridConnectivity1to11 ... GridConnectivity1to1N ) ; (o)

List( GridConnectivity_t<IndexDimension, CellDimension>
GridConnectivity1 ... GridConnectivityN ) ; (o)

List( OversetHoles_t<IndexDimension>
OversetHoles1 ... OversetHolesN ) ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, GridConnectivity1to1_t, GridConnectivity_t, Over-
setHoles_t, and UserDefinedData_t lists are as shown; users may choose other legitimate
names. users may choose other legitimate names. Legitimate names must be unique within
a given instance of ZoneGridConnectivity_t.

2. All lists within the ZoneGridConnectivity_t structure may be empty.

ZoneGridConnectivity_t requires two structure parameters, IndexDimension, which is passed
onto all connectivity substructures, and CellDimension, which is passed to GridConnectivity_t
only.

Connectivity information for 1-to-1 or matched multizone interfaces is contained in the GridCon-
nectivity1to1_t structure. Abutting and overset connectivity is contained in the GridConnec-
tivity_t structure, and overset-grid holes are identified in the OversetHoles_t structure.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

8.2 1-to-1 Interface Connectivity Structure Definition: GridConnectivity1to1_t

GridConnectivity1to1_t only applies to structured zones interfacing with structured donors and
whose interface is a logically rectangular region. It contains connectivity information for a multizone
interface patch that is abutting with 1-to-1 matching between adjacent zone indices (also referred
to as C0 connectivity). An interface patch is the subrange of the face of a zone that touches one
and only one other zone. This structure identifies the subrange of indices for the two adjacent zones
that make up the interface and gives an index transformation from one zone to the other. It also
identifies the name of the adjacent zone.

All the interface patches for a given zone are contained in the ZoneGridConnectivity_t entity
for that zone. If a face of a zone touches several other zones (say N), then N different instances
of the GridConnectivity1to1_t structure must be included in the zone to describe each separate
interface patch. This convention requires that a single interface patch be described twice in the
database—once for each adjacent zone.

70



AIAA R-101A-2005

GridConnectivity1to1_t< int IndexDimension > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

int[IndexDimension] Transform ; (o/d)

IndexRange_t<IndexDimension> PointRange ; (r)
IndexRange_t<IndexDimension> PointRangeDonor ; (r)

Identifier(Zone_t) ZoneDonorName ; (r)

GridConnectivityProperty_t GridConnectivityProperty ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)

int Ordinal ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance
of GridConnectivity1to1_t and shall not include the names GridConnectivityProperty,
PointRange, PointRangeDonor, Transform, or Ordinal.

2. If Transform is absent, then its default value is [+1,+2,+3].
3. ZoneDonorName must be equated to a zone identifier within the current CGNS database (i.e.,

it must be equal to one of the Zone_t identifiers contained in the current CGNSBase_t entity).
4. Beginning indices of PointRange and PointRangeDonor must coincide (i.e. must be the same

physical point); ending indices of PointRange and PointRangeDonor must also coincide.
5. Elements of Transform must be signed integers in the range -IndexDimension, . . ., +In-

dexDimension; element magnitudes may not be repeated. In 3-D allowed elements are 0, ±1,
±2, ±3.

PointRange contains the subrange of indices that makes up the interface patch in the current zone
(i.e. that Zone_t entity that contains the given instance of GridConnectivity1to1_t). PointRange-
Donor contains the interface patch subrange of indices for the adjacent zone (whose identifier is given
by ZoneDonorName). By convention the indices contained in PointRange and PointRangeDonor
refer to vertices.

Transform contains a short-hand notation for the transformation matrix describing the relation be-
tween indices of the two adjacent zones. The transformation matrix itself has rank IndexDimension
and contains elements +1, −1 and 0; it is orthonormal and its inverse is its transpose. The trans-
formation matrix (T) works as follows: if Index1 and Index2 are the indices of a given point on
the interface, where Index1 is in the current zone and Index2 is in the adjacent zone, then their
relationship is,

71



AIAA R-101A-2005

Index2 = T.(Index1 - Begin1) + Begin2

Index1 = Transpose[T].(Index2 - Begin2) + Begin1

where the ‘.’ notation indicates matrix-vector multiply. Begin1 and End1 are the subrange indices
contained in PointRange, and Begin2 and End2 are the subrange indices contained in PointRange-
Donor.

The short-hand notation used in Transform is as follows: each element shows the image in the
adjacent zone’s face of a positive index increment in the current zone’s face. The first element
is the image of a positive increment in i; the second element is the image of an increment in j;
and the third (in 3-D) is the image of an increment in k on the current zone’s face. For 3-D, the
transformation matrix T is constructed from Transform = [±a, ±b, ±c] as follows:

T =

 sgn(a) del(a− 1) sgn(b) del(b− 1) sgn(c) del(c− 1)
sgn(a) del(a− 2) sgn(b) del(b− 2) sgn(c) del(c− 2)
sgn(a) del(a− 3) sgn(b) del(b− 3) sgn(c) del(c− 3)

 ,
where,

sgn(x) ≡
{

+1, if x ≥ 0
−1, if x < 0

del(x− y) ≡
{

1, if abs(x) = abs(y)
0, otherwise

For example, Transform = [−2, +3, +1] gives the transformation matrix,

T =

 0 0 +1
−1 0 0

0 +1 0

 .
For establishing relationships between adjacent and current zone indices lying on the interface itself,
one of the elements of Transform is superfluous since one component of both interface indices
remains constant. It is therefore acceptable to set that element of Transform to zero.

If the transformation matrix is used for continuation of computational coordinates into the adjacent
zone (e.g. to find the location of a rind point in the adjacent zone), then all elements of Transform
are needed. If the above mentioned superfluous element is set to zero, it can be easily regenerated
from PointRange and PointRangeDonor and the grid sizes of the two zones. This is done by
determining the faces represented by PointRange and PointRangeDonor (i.e. i-min, i-max, j-min,
etc.). If one is a minimum face and the other a maximum face, then the sign of the missing element
in Transform is ‘+’, and the value of the missing element in the transformation matrix (T) is +1.
If the faces are both minimums or are both maximums, the sign is ‘−’. Next, the position and
magnitude of the element in Transform, and hence the row and column in the transformation
matrix, is given by the combinations of i, j and k faces for the two. For example, if PointRange
represents a j-min or j-max face and PointRangeDonor represents an i-min or i-max face, then the
missing element’s position in Transform is 2 and its magnitude is 1 (i.e. Transform = [∗, ±1, ∗]).
Note also that the transform matrix and the two index pairs overspecify the interface patch. For
example, End2 can be obtained from Transform, Begin1, End1 and Begin2.

A GridConnectivityProperty_t data structure, described in Section 8.5, may be used to record
special properties associated with particular connectivity patches, such as a periodic interface, or
an interface where data is to be averaged in some way.

72



AIAA R-101A-2005

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

Ordinal is user-defined and has no restrictions on the values that it can contain. It is included for
backward compatibility to assist implementation of the CGNS system into applications whose I/O
depends heavily on the numbering of zone interfaces. Since there are no restrictions on the values
contained in Ordinal (or that Ordinal is even provided), there is no guarantee that the interfaces
in an existing CGNS database will have sequential values from 1 to N without holes or repetitions.
Use of Ordinal is discouraged and is on a user-beware basis.

8.3 1-to-1 Interface Connectivity Examples

This section contains two examples of structure entities for describing the connectivity for struc-
tured-zone 1-to-1 abutting multizone interfaces. Annex B contains additional examples of 1-to-1
interfaces.

Example 8-A: 1-to-1 Abutting of Complete Faces

Two zones have the same orientation; zone 1 is 9×17×11 and zone 2 is 9×17×21. The k-max
face of zone 1 abuts the k-min face of zone 2. Contained in the structure entities of zone 1 is the
following interface structure:

GridConnectivity1to1_t<3> Zone1/ZoneGridConnectivity/KMax =
{{
int[3] Transform = [1,2,3] ;
IndexRange_t<3> PointRange =
{{
int[3] Begin = [1,1,11] ;
int[3] End = [9,17,11] ;
}} ;

IndexRange_t<3> PointRangeDonor =
{{
int[3] Begin = [1,1,1] ;
int[3] End = [9,17,1] ;
}} ;

Identifier(Zone_t) ZoneDonorName = Zone2 ;
}} ;

Contained in the structure entities of zone 2 is the following:

GridConnectivity1to1_t<3> Zone2/ZoneGridConnectivity/KMin =
{{
int[3] Transform = [1,2,3] ;
IndexRange_t<3> PointRange =
{{

73



AIAA R-101A-2005

int[3] Begin = [1,1,1] ;
int[3] End = [9,17,1] ;
}} ;

IndexRange_t<3> PointRangeDonor =
{{
int[3] Begin = [1,1,11] ;
int[3] End = [9,17,11] ;
}} ;

Identifier(Zone_t) ZoneDonorName = Zone1 ;
}} ;

This example assumes zones 1 and 2 have the identifiers Zone1 and Zone2, respectively.

Example 8-B: 1-to-1 Abutting, Complete Face to a Subset of a Face

��
��
��
�� ��������

��
��
��
��s

s
s

s
-����*

6

i

j
k

(17, 3, 1)

(17, 9, 5)

Zone 1
17×9×7

��
��
� �����

��
��
�s

s
s

s

�����

�

?
i

j

k

(7, 9, 5)

(1, 9, 1)

Zone 2
7×9×5

Figure 3: Example Interface for 1-to-1 Connectivity

Figure 3 shows a more complex 1-to-1 abutting interface, where the entire j-max face of zone 2
coincides with a subset of the i-max face of zone 1. This situation would result in the following
connectivity structures:

GridConnectivity1to1_t<3> Zone1/ZoneGridConnectivity/IMax =
{{
int[3] Transform = [-2,-1,-3] ;
IndexRange_t<3> PointRange =
{{
int[3] Begin = [17,3,1] ;
int[3] End = [17,9,5] ;
}} ;

IndexRange_t<3> PointRangeDonor =
{{
int[3] Begin = [7,9,5] ;

74



AIAA R-101A-2005

int[3] End = [1,9,1] ;
}} ;

Identifier(Zone_t) ZoneDonorName = Zone2 ;
}} ;

GridConnectivity1to1_t<3> Zone2/ZoneGridConnectivity/JMax =
{{
int[3] Transform = [-2,-1,-3] ;
IndexRange_t<3> PointRange =
{{
int[3] Begin = [1,9,1] ;
int[3] End = [7,9,5] ;
}} ;

IndexRange_t<3> PointRangeDonor =
{{
int[3] Begin = [17,9,5] ;
int[3] End = [17,3,1] ;
}} ;

Identifier(Zone_t) ZoneDonorName = Zone1 ;
}} ;

This example also assumes zones 1 and 2 have the identifiers Zone1 and Zone2, respectively. Note
that the index transformation matrix for both this and the previous examples is symmetric; hence,
the value of Transform is identical for both members of the interface pair. In general this will not
always be the case.

8.4 General Interface Connectivity Structure Definition: GridConnectivity_t

GridConnectivity_t contains connectivity information for generalized multizone interfaces, and
may be used for any mix of structured and unstructured zones. Its purpose is to describe mismatched-
abutting and overset interfaces, but can also be used for 1-to-1 abutting interfaces.

For abutting interfaces that are not 1-to-1, also referred to as patched or mismatched, an interface
patch is the subrange of the face of a zone that touches one and only one other zone. This
structure identifies the subrange of indices (or array of indices) that make up the interface and
gives their image in the adjacent (donor) zone. It also identifies the name of the adjacent zone.
If a given face of a zone touches several (say N) adjacent zones, then N different instances of
GridConnectivity_t are needed to describe all the interfaces. For a single abutting interface, two
instances of GridConnectivity_t are needed in the database – one for each adjacent zone.

For overset interfaces, this structure identifies the fringe points of a given zone that lie in one and
only one other zone. If the fringe points of a zone lie in several (say N) overlapping zones, then
N different instances of GridConnectivity_t are needed to describe the overlaps. It is possible
with overset grids that a single fringe point may actually lie in several overlapping zones (though in
typical usage, linkage to only one of the overlapping zones is kept). There is no restriction against

75



AIAA R-101A-2005

a given fringe point being contained within multiple instances of GridConnectivity_t; therefore,
this structure allows the description of a single fringe point lying in several overlapping zones.

GridConnectivityType_t := Enumeration(
Null,
Overset,
Abutting,
Abutting1to1,
UserDefined ) ;

GridConnectivity_t< int IndexDimension, int CellDimension > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

GridConnectivityType_t GridConnectivityType ; (o/d)

GridLocation_t GridLocation ; (o/d)

IndexRange_t<IndexDimension> PointRange ; (o:r)
IndexArray_t<IndexDimension, PointListSize, int> PointList ; (r:o)
IndexArray_t<IndexDimension, PointListSize, int> PointListDonor ; (o:r)
IndexArray_t<IndexDimension, PointListSize, int> CellListDonor ; (r:o)

Identifier(Zone_t) ZoneDonorName ; (r)

DataArray_t <real, 2, [CellDimension, PointListSize]> InterpolantsDonor (r:o)

GridConnectivityProperty_t GridConnectivityProperty ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)

int Ordinal ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users
may choose other legitimate names. Legitimate names must be unique within a given in-
stance of GridConnectivity_t and shall not include the names CellListDonor, GridCon-
nectivityProperty, GridConnectivityType, GridLocation, InterpolantsDonor, Ordi-
nal, PointList, PointListDonor, or PointRange.

2. ZoneDonorName must be equated to a zone identifier within the current CGNS database (i.e. it
must be equal to one of the Zone_t identifiers contained in the current CGNSBase_t entity).

3. If GridConnectivityType is absent, then its default value is Overset.

76



AIAA R-101A-2005

4. GridLocation should be Vertex for Abutting or Abutting1to1 interfaces; in other words,
the connectivity information is always given with respect to the grid vertices. For Overset
interfaces, GridLocation can be either Vertex or CellCenter. In any case, if GridLocation
is absent, then its default value is Vertex.

5. One of PointRange and PointList must be specified, but not both.
6. If PointRange is specified, then an index ordering convention is needed to map receiver-zone

grid points to donor-zone grid points. FORTRAN multidimensional array ordering is used.
7. If GridConnectivityType is Abutting1to1 or Abutting, then PointRange or PointList

must define points associated with a face subrange (if the zone is structured, all points must
be in a single computational grid plane); the donor-zone grid locations defined by PointList-
Donor or CellListDonor must also be associated with a face subrange.

8. Either PointListDonor alone, or CellListDonor plus InterpolantsDonor, must be used.
The use of PointListDonor is restricted to Abutting1to1, whereas CellListDonor plus
InterpolantsDonor can be used for any interface type.

The type of multizone interface connectivity may be Overset, Abutting, or Abutting1to1. Over-
set refers to zones that overlap; for a 3-D configuration the overlap is a 3-D region. Abutting refers
to zones that abut or touch, but do not overlap (other than the vertices and faces that make up
the interface). Abutting1to1 is a special case of abutting interfaces where grid lines are continuous
across the interface and all vertices on the interface are shared by the two adjacent zones. See
Section 3.4 for a description of the three different types of interfaces.

The interface grid points within the receiver zone may be specified by PointRange if they constitute
a logically rectangular region (e.g. an abutting interface where an entire face of the receiver zone
abuts with a part of a face of the donor zone). In all other cases, PointList should be used to list
the receiver-zone grid points making up the interface. For a structured-to-structured interface, all
indices in PointRange or PointList should have one index element in common (see note 7).

GridLocation identifies the location of indices within the receiver zone described by PointRange
or PointList; it also identifies the location of indices defined by PointListDonor in the donor
zone. For Overset interfaces, GridLocation may be either Vertex or CellCenter, allowing the
description of the overlap region in the receiver zone to be consistent with the grid location used
for storing the flow solution. For Abutting and Abutting1to1 interfaces, GridLocation should be
Vertex.

GridLocation does not apply to CellListDonor or InterpolantsDonor. The CellListDonor is
always an index or indices that define a particular cell or element, while the InterpolantsDonor
defines an interpolation value relative to the cell/element vertices.

PointListDonor may only be used when the interface is Abutting1to1. It contains the images
of all the receiver-zone interface points in the donor zone. If the zone is structured, all indices in
PointListDonor should have one index element in common.

For mismatched or overset interfaces, the zone connectivity is defined using the combination of
CellListDonor and InterpolantsDonor. CellListDonor contains the list of donor cells in which
each node of the receiver zone can be located. InterpolantsDonor contains the interpolation
factors to locate the receiver nodes in the donor cells. InterpolantsDonor may be thought of as
bi- or tri-linear interpolants (depending on CellDimension) in the cell of the donor zone.

77



AIAA R-101A-2005

A GridConnectivityProperty_t data structure, described in Section 8.5, may be used to record
special properties associated with particular connectivity patches, such as a periodic interface, or
an interface where data is to be averaged in some way.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

Ordinal is user-defined and has no restrictions on the values that it can contain. It is included for
backward compatibility to assist implementation of the CGNS system into applications whose I/O
depends heavily on the numbering of zone interfaces. Since there are no restrictions on the values
contained in Ordinal (or that Ordinal is even provided), there is no guarantee that the interfaces
for a given zone in an existing CGNS database will have sequential values from 1 to N without
holes or repetitions. Use of Ordinal is discouraged and is on a user-beware basis.

FUNCTION PointListSize:

return value: int
dependencies: PointRange, PointList

PointListDonor, CellListDonor, and InterpolantsDonor require the function PointListSize,
to identify the length of the array. If PointRange is specified by GridConnectivity_t, then
PointListSize is obtained from the number of grid points (inclusive) between the beginning and
ending indices of PointRange. If PointList is specified by GridConnectivity_t, then PointList-
Size is actually a user input during creation of the database; it is the length of the array PointList
whose elements are also user inputs (by ‘user’ we mean the application code that is generating the
CGNS database).

By definition, the PointList and PointListDonor arrays have the same size, and this size should
be stored along with the arrays in their respective IndexArray_t structures. PointListSize was
chosen to be a structure function, rather than a separate element of GridConnectivity_t for
the following reasons: first, it is redundant if PointRange is specified; and second, it leads to
redundant storage if PointList is specified, since the value of PointListSize is also stored within
the PointList structure.

This situation has somewhat of a precedent within the SIDS definitions. The structure Descrip-
tor_t contains a string of unspecified length. Yet in actual implementation, the (string) length is
a function of the descriptor string itself and should be stored along with the string.

8.5 Grid Connectivity Property Structure Definition: GridConnectivityProperty_t

GridConnectivityProperty_t allows the recording of special properties associated with particular
connectivity patches. At the current time, only two properties (Periodic_t and AverageInter-
face_t) are included, but extensions involving other properties may be implemented as additional
nodes under GridConnectivityProperty_t in the future.

GridConnectivityProperty_t :=

78



AIAA R-101A-2005

{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

Periodic_t Periodic ; (o)

AverageInterface_t AverageInterface ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance of
GridConnectivityProperty_t and shall not include the names Periodic or AverageInter-
face.

The Periodic_t and AverageInterface_t data structures may be used to record properties asso-
ciated with periodic interfaces, or interfaces where data is to be averaged in some way, respectively.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

8.5.1 Periodic Interface Structure Definition: Periodic_t

The Periodic_t data structure allows data associated with a periodic interface to be recorded.

Periodic_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

DataArray_t<real, 1, PhysicalDimension> RotationCenter ; (r)
DataArray_t<real, 1, PhysicalDimension> RotationAngle ; (r)
DataArray_t<real, 1, PhysicalDimension> Translation ; (r)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

79



AIAA R-101A-2005

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance of
Periodic_t and shall not include the names DataClass, DimensionalUnits, RotationAngle,
RotationCenter, or Translation.

RotationCenter is the origin for defining the rotation angle between the periodic interfaces. Ro-
tationAngle defines the angle from the current interface to the connecting interface. Translation
defines the translation from the current interface to the connecting interface.

DataClass defines the default for the class of data contained in the DataArray_t structures. If the
data is dimensional, DimensionalUnits may be used to describe the system of dimensional units
employed. If present, these two entities take precedence of all corresponding entities at higher levels
of the hierarchy. These precedence rules are further discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

8.5.2 Average Interface Structure Definition: AverageInterface_t

The AverageInterface_t data structure is used when data at the current connectivity interface is
to be averaged in some way prior to passing it to a neighboring interface.

AverageInterface_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

AverageInterfaceType_t AverageInterfaceType ; (r)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance of
AverageInterface_t and shall not include the name AverageInterfaceType.

AverageInterfaceType_t is a required enumeration data structure that is used to define the type
of averaging to be done.

AverageInterfaceType_t := Enumeration(
Null,
AverageAll,
AverageCircumferential,

80



AIAA R-101A-2005

AverageRadial,
AverageI,
AverageJ,
AverageK,
UserDefined ) ;

AverageAll means that the data from the entire current patch is averaged, whereas each of the
other choices indicates averaging of the data on the current interface in the indicated direction.
Note that AverageI, AverageJ, and AverageK apply only to structured grids.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

8.6 Overset Grid Holes Structure Definition: OversetHoles_t

Grid connectivity for overset grids must also include ‘holes’ within zones, where any solution states
are ignored or ‘turned off’, because they are solved for in some other overlapping zone. The
structure OversetHoles_t specifies those points within a given zone that make up a hole (or holes),
and applies to both structured and unstructured zones. Grid points specified in this structure are
equivalent to those with IBLANK=0 in the PLOT3D format.

OversetHoles_t< int IndexDimension > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

GridLocation_t GridLocation ; (o/d)

List( IndexRange_t<IndexDimension>
PointRange, PointRange2 ... PointRangeN ) ; (o:r)

IndexArray_t<IndexDimension, PointListSize, int> PointList ; (r:o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, IndexRange_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of OversetHoles_t and shall not include the names GridLocation or
PointList.

2. If GridLocation is absent, then its default value is Vertex.
3. One of PointRange and PointList must be specified, but not both.

81



AIAA R-101A-2005

The location of grid indices specified in PointList and the PointRange list is given by GridLoca-
tion.

The grid points making up a hole within a zone may be specified by PointRange if they constitute
a logically rectangular region. If the hole points constitute a (small) set of possibly overlapping
logically rectangular regions, then they may be specified by the list PointRange, PointRange2,
etc. The more general alternate is to use PointList to list all grid points making up the hole(s)
within a zone. Note that using multiple PointRange specifications may result in a given hole being
specified more than once.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

FUNCTION PointListSize:

return value: int
dependencies: PointList

OversetHoles_t requires one structure function, PointListSize, to identify the length of the
PointList array. PointListSize is a user input. (See the discussion on function PointListSize
in Section 8.4).

82



AIAA R-101A-2005

9 Boundary Conditions

This section is an attempt to unify boundary-condition specifications within Navier-Stokes codes.
The structures and conventions developed are a compromise between simplicity and generality. It
is imperative that they be easy to use initially, but that they are general enough to provide future
flexibility and extensibility.

This section may be somewhat daunting initially. It is suggested that the reader refer to the several,
well-explained examples presented in Section 9.10 during study of the following sections to help
resolve any questions and confusions that might arise.

The difficulty with boundary conditions is that there is such a wide variety used, and even a single
boundary-condition equation is often implemented differently in different codes. Some boundary
conditions, such as a symmetry plane, are fairly well defined. Other boundary conditions are
much looser in their definition and implementation. An inflow boundary is a good example. It is
generally accepted how many solution quantities should be specified at an inflow boundary (from
mathematical well-posedness arguments), but what those quantities are will change with the class
of flow problems (e.g. internal flows vs. external flows), and they will also change from code to code.

An additional difficulty for CFD analysis is that in some situations different boundary-condition
equations are applied depending on local flow conditions. Any boundary where the flow can change
from inflow to outflow or supersonic to subsonic is a candidate for flow-dependent boundary-
condition equations.

These difficulties have molded the design of our boundary-condition specification structures and
conventions. We define boundary-condition types (Section 9.7) that establish the equations to be
enforced. However, for those more loosely defined boundary conditions, such as inflow/outflow,
the boundary-condition type merely establishes general guidelines on the equations to be imposed.
Augmenting (and superseding) the information provided by the boundary-condition type is precisely
defined boundary-condition solution data. We rely on our conventions for data-name identifiers
to identify the exact quantities involved in the boundary conditions; these data-name identifier
conventions are presented in Annex A.

One flexibility that is provided by this approach is that boundary-condition information can easily
be built during the course of an analysis. For example, during grid-generation phases minimal
information (e.g. the boundary-condition type) may be given. Then prior to running of the flow
solver, more specific boundary-condition information, such as Dirichlet or Neumann data, may be
added to the database.

An additional flexibility provided by the structures of this section is that both uniform and non-
uniform boundary-condition data can be described within the same framework.

We realize that most current codes allow little or no flexibility in choosing solution quantities to
specify for a given boundary-condition type. We also realize the coding effort involved with checking
for consistency between I/O specifications and internal boundary-condition routines. To make these
boundary-condition structures more palatable initially, we adopt the convention that if no solution
quantities are specified for a given boundary-condition type, then the code is free to enforce any
appropriate boundary condition (see Section 9.9).

Note that there are no boundary-condition structures defined for abutting or overset interfaces,

83



AIAA R-101A-2005

unless they involve cases of symmetry or degeneracy. In other words, it is a CGNS design intent
that a given zone boundary segment or location should at most be defined (or covered) by either a
boundary condition or a multizone interface connectivity, but not by both. There is also no separate
boundary-condition structure for periodic boundary conditions (i.e. when a zone interfaces with
itself). Both of these situations are addressed by the interface connectivity data structures described
in Section 8.

In the sections to follow, the definitions of boundary-condition structures are first presented in
Section 9.1 through Section 9.6. Boundary-condition types are then discussed in detail in Section 9.7,
including a description of the boundary-condition equations to be enforced for each type; this sec-
tion also describes the distinction between boundary-condition types that impose a set of equations
regardless of local flow conditions and those that impose different sets of boundary-condition equa-
tions depending on the local flow solution. The rules for matching boundary-condition types and
the appropriate sets of boundary-condition equations are next discussed in Section 9.8. Details of
specifying data to be imposed in boundary-condition equations are provided in Section 9.9. Finally,
Section 9.10 presents several examples of boundary conditions.

9.1 Boundary Condition Structures Overview

Prior to presenting the detailed boundary condition structures, we give a brief overview of the
hierarchy used to describe boundary conditions.

Boundary conditions are classified as either fixed or flow-dependent. Fixed boundary conditions
enforce a given set of boundary-condition equations regardless of flow conditions; whereas, flow-
dependent boundary conditions enforce different sets of boundary-condition equations depending
on local flow conditions. We incorporate both fixed and flow-dependent boundary conditions into
a uniform framework. This allows all boundary conditions to be described in a similar manner.
We consider this functionally superior to separately treating fixed and flow-dependent boundary
conditions, even though the latter allows a simpler description mechanism for fixed boundary condi-
tions. The current organization also makes sense considering the fact that flow-dependent boundary
conditions are composed of multiple sets of fixed boundary conditions.

Figure 4 depicts the hierarchy used for prescribing a single boundary condition. Each boundary
condition includes a type that describes the general equations to enforce, a patch specification, and
a collection of data sets. The minimum required information for any boundary condition is the
patch specification and the boundary-condition type (indicated by “BC type (compound)” in the
figure). This minimum information is similar to that used in many existing flow solvers.

Generality in prescribing equations to enforce and their associated boundary-condition data is
provided in the optional data sets. Each data set contains all boundary condition data required
for a given fixed or simple boundary condition. Each data set is also tagged with a boundary-
condition type. For fixed boundary conditions, the hierarchical tree contains a single data set, and
the two boundary-condition types shown in Figure 4 are identical. Flow-dependent or compound
boundary conditions contain multiple data sets, each to be applied separately depending on local
flow conditions. The compound boundary-condition type describes the general flow-dependent
boundary conditions, and each data set contains associated simple boundary-condition types. For
example, a farfield boundary condition would contain four data sets, where each applies to the

84



AIAA R-101A-2005

BCr������������������r
BC patch

specification

"
"

"
"
"

"
""r

BC type
(compound)

A
A
A
AAr

rBC data set (1)
!!!!!!!!!!!r

BC type
(simple)

r
rDirichlet BC data

α β











J
J
J
JJr r

PPPPPPPPPPPPPr
rNeumann BC data

γ δ











J
J
J
JJr r

XXXXXXXXXXXXXXXXXXr
rBC data set (N)

!! PPP

· · ·

Figure 4: Hierarchy for Boundary Condition Structures

different combinations of subsonic and supersonic inflow and outflow. Boundary-condition types
are described in Section 9.7 and Section 9.8.

Within a single data set, boundary condition data is grouped by equation type into Dirichlet and
Neumann data. The lower leaves of Figure 4 show data for generic flow-solution quantities α and
β to be applied in Dirichlet conditions, and data for γ and δ to be applied in Neumann boundary
conditions. DataArray_t entities are employed to store these data and to identify the specific flow
variables they are associated with.

In situations where the data sets (or any information contained therein) are absent from a given
boundary-condition hierarchy, flow solvers are free to impose any appropriate boundary conditions.
Although not pictured in Figure 4, it is also possible to specify the reference state from which the
flow solver should extract the boundary-condition data.

9.2 Zonal Boundary Condition Structure Definition: ZoneBC_t

All boundary-condition information pertaining to a given zone is contained in the ZoneBC_t struc-
ture.

ZoneBC_t< int IndexDimension, int PhysicalDimension > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

List( BC_t<IndexDimension, int PhysicalDimension> BC1 ... BCN ) ; (o)

ReferenceState_t ReferenceState ; (o)

85



AIAA R-101A-2005

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, BC_t, and UserDefinedData_t lists are as shown;
users may choose other legitimate names. Legitimate names must be unique within a given
instance of ZoneBC_t and shall not include the names DataClass, DimensionalUnits, or
ReferenceState.

2. All lists within a ZoneBC_t structure entity may be empty.

ZoneBC_t requires two structure parameters, IndexDimension and PhysicalDimension, which are
passed onto all BC_t substructures.

Boundary-condition information for a single patch is contained in the BC_t structure. All boundary-
condition information pertaining to a given zone is contained in the list of BC_t structure entities.
If a zone contains N boundary-condition patches, then N (and only N) separate instances of BC_t
must be provided in the ZoneBC_t entity for the zone. That is, each boundary-condition patch
must be represented by a single BC_t entity.

Reference data applicable to all boundary conditions of a zone is contained in the ReferenceState
structure. DataClass defines the zonal default for the class of data contained in the boundary
conditions of a zone. If the boundary conditions contain dimensional data, DimensionalUnits
may be used to describe the system of dimensional units employed. If present, these three entities
take precedence of all corresponding entities at higher levels of the hierarchy. These precedence
rules are further discussed in Section 6.4.

Reference-state data is useful for situations where boundary-condition data is not provided, and
flow solvers are free to enforce any appropriate boundary condition equations. The presense of
ReferenceState at this level or below specifies the appropriate flow conditions from which the
flow solver should extract its boundary-condition data. For example, when computing an external
flowfield around an airplane, an engine nozzle exit is often simulated by imposing a stagnation
pressure boundary condition (or some other stagnation quantity) different from freestream. The
nozzle-exit stagnation quantities could be specified in an instance of ReferenceState at this level
or below in lieu of providing explicit Dirichlet or Neumann data (see Section 9.9).

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

9.3 Boundary Condition Structure Definition: BC_t

BC_t contains boundary-condition information for a single BC surface patch of a zone. A BC patch
is the subrange of the face of a zone where a given boundary condition is applied.

86



AIAA R-101A-2005

The structure contains a boundary-condition type, as well as one or more sets of boundary-condition
data that are used to define the boundary-condition equations to be enforced on the BC patch.
For most boundary conditions, a single data set is all that is needed. The structure also contains
information describing the normal vector to the BC surface patch.

BC_t< int IndexDimension, int PhysicalDimension > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

BCType_t BCType ; (r)

GridLocation_t GridLocation ; (o/d)

IndexRange_t<IndexDimension> PointRange ; (r:o:o:o)
IndexArray_t<IndexDimension, ListLength, int> PointList ; (o:r:o:o)
IndexRange_t<IndexDimension> ElementRange ; (o:o:r:o)
IndexArray_t<IndexDimension, ListLength, int> ElementList ; (o:o:o:r)

int[IndexDimension] InwardNormalIndex ; (o)

IndexArray_t<PhysicalDimension, ListLength, real> InwardNormalList ; (o)

List( BCDataSet_t<ListLength> BCDataSet1 ... BCDataSetN ) ; (o)

BCProperty_t BCProperty ; (o)

FamilyName_t FamilyName ; (o)

ReferenceState_t ReferenceState ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)

int Ordinal ; (o)
} ;

Notes

1. Default names for the Descriptor_t, BCDataSet_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of BC_t and shall not include the names BCProperty, BCType, DataClass,

87



AIAA R-101A-2005

DimensionalUnits, ElementList, ElementRange, FamilyName, GridLocation, InwardNor-
malIndex, InwardNormalList, Ordinal, PointList, PointRange or ReferenceState.

2. The patch on which the boundary condition is to be applied is specified by one of PointRange,
PointList, ElementRange, or ElementList. Only one of these may be specified.

3. PointRange and PointList refer to either vertices or cell faces, depending on the value of
GridLocation. GridLocation may be set to Vertex, IFaceCenter, JFaceCenter, KFace-
Center, or FaceCenter. If GridLocation is absent, then its default value is Vertex.

When GridLocation is set to Vertex, then PointList or PointRange refer to node indices,
for both structured and unstructured grids. These node indices define the BC patch. In
particular, it should be noted that these points can be interpreted in one of two ways — the
finite-difference sense and the finite-volume sense. In the finite-difference sense, the points
are defined as specific point locations at which the BC patch is enforced. In the finite-volume
sense, the points define the boundary surrounding the BC patch region; thus, the indices
are used to define the logical region in index-space within which the particular BC patch is
defined. This latter case means that the edges of the BC patches may be multiply defined,
but the areas which are enclosed are unique. There is no mechanism currently included in
this standard to differentiate between these two interpretations. Both are allowed.

When GridLocation is set to FaceCenter, then PointList or PointRange refer to face ele-
ments. Face elements are indexed using different methods depending if the zone is structured
or unstructured. For a structured zone, face elements are indexed using the minimum of the
connecting vertex indices, as described in Section 3.2. For an unstructured zone, face elements
are indexed using their element numbering, as defined in the Elements_t data structures.

4. ElementRange and ElementList always refer to cell faces, and GridLocation is ignored.
5. InwardNormalIndex is only an option for structured grids. For unstructured grid boundaries,

it should not be used. InwardNormalIndex may have only one nonzero element, whose sign
indicates the computational-coordinate direction of the BC patch normal; this normal points
into the interior of the zone.

6. InwardNormalList contains a list of vectors normal to the BC patch pointing into the interior
of the zone. It is a function of PhysicalDimension and ListLength. The vectors are located
at the vertices of the BC patch when PointRange or PointList is used with GridLocation
set to Vertex. They are located at cell-face midpoints when PointRange or PointList is
used with GridLocation set to FaceCenter (or IFaceCenter, etc.), or when ElementRange
or ElementList is used. The vectors are not required to have unit magnitude.

7. If a range (PointRange or ElementRange) and InwardNormalList are specified, an ordering
convention is needed for indices on the BC patch. An ordering convention is also needed if
a range is specified and local data is present in the BCDataSet_t substructures. FORTRAN
multidimensional array ordering is used.

BCType specifies the boundary-condition type, which gives general information on the boundary-
condition equations to be enforced. BCType_t is defined in Section 9.7 along with the meanings of
all the BCType values.

The BC patch may be specified by PointRange or ElementRange if it constitutes a logically rect-
angular region. In all other cases, PointList or ElementList should be used to list the vertices or
cell faces making up the BC patch.

88



AIAA R-101A-2005

Some boundary conditions require a normal direction to be specified in order to be properly imposed.
For structured zones a computational-coordinate normal can be derived from the BC patch specifi-
cation by examining redundant index components. Alternatively, for structured zones this informa-
tion can be provided directly by InwardNormalIndex. From Note 5, this vector points into the zone
and can have only one non-zero element. For exterior faces of a zone in 3-D, InwardNormalIndex
should take the following values:

Face InwardNormalIndex Face InwardNormalIndex

i-min [+1, 0, 0] i-max [−1, 0, 0]
j-min [0,+1, 0] j-max [0,−1, 0]
k-min [0, 0,+1] k-max [0, 0,−1]

The physical-space normal vectors of the BC patch may be described by InwardNormalList; these
are located at vertices or cell faces, consistent with the BC patch specification. InwardNormalList
is listed as an optional field because it is not always needed to enforce boundary conditions, and
the physical-space normals of a BC patch can usually be constructed from the grid. However, there
are some situations, such as grid-coordinate singularity lines, where InwardNormalList becomes a
required field, because it cannot be generated from other information.

The BC_t structure provides for a list of boundary-condition data sets, described in the next section.
In general, the proper BCDataSet_t instance to impose on the BC patch is determined by the BCType
association table (Table 4 on p. 100). The mechanics of determining the proper data set to impose
is described in Section 9.8.

For a few boundary conditions, such as a symmetry plane or polar singularity, the value of BCType
completely describes the equations to impose, and no instances of BCDataSet_t are needed. For
‘simple’ boundary conditions, where a single set of Dirichlet and/or Neumann data is applied,
a single BCDataSet_t will likely appear (although this is not a requirement). For ‘compound’
boundary conditions, where the equations to impose are dependent on local flow conditions, several
instances of BCDataSet_t will likely appear; the procedure for choosing the proper data set is more
complex as described in Section 9.8.

A BCProperty_t data structure, described in Section 9.6, may be used to record special properties
associated with particular boundary condition patches, such as wall functions or bleed regions.

FamilyName identifies the family to which the boundary belongs. Family names link the mesh
boundaries to the CAD surfaces. (See Section 12.6.) Boundary conditions may also be defined
directly on families. In this case, the BCType must be FamilySpecified. If, under a BC_t structure,
both FamilyName_t and BCType_t are present, and the BCType is not FamilySpecified, then the
BCType which is specified takes precedence over any BCType which might be stored in a FamilyBC_t
structure under the specified Family_t.

Reference data applicable to the boundary conditions of a BC patch is contained in the Refer-
enceState structure. DataClass defines the default for the class of data contained in the boundary
conditions. If the boundary conditions contain dimensional data, DimensionalUnits may be used
to describe the system of dimensional units employed. If present, these three entities take prece-
dence of all corresponding entities at higher levels of the hierarchy. These precedence rules are
further discussed in Section 6.4.

89



AIAA R-101A-2005

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

Ordinal is user-defined and has no restrictions on the values that it can contain. It is included
for backward compatibility to assist implementation of the CGNS system into applications whose
I/O depends heavily on the numbering of BC patches. Since there are no restrictions on the values
contained in Ordinal (or that Ordinal is even provided), there is no guarantee that the BC patches
for a given zone in an existing CGNS database will have sequential values from 1 to N without
holes or repetitions. Use of Ordinal is discouraged and is on a user-beware basis.

FUNCTION ListLength:

return value: int
dependencies: PointRange, PointList, ElementRange, ElementList

BC_t requires the structure function ListLength, which is used to specify the number of vertices
or cell faces corresponding to a given PointRange, PointList, ElementRange, or ElementList. If
PointRange is specified, then ListLength is obtained from the number of points (inclusive) between
the beginning and ending indices of PointRange. If PointList is specified, then ListLength is the
number of indices in the list of points. In this situation, ListLength becomes a user input along
with the indices of the list PointList. By ‘user’ we mean the application code that is generating
the CGNS database. If ElementRange or ElementList is specified, then ListLength is defined by
the cell faces making up the BC patch.

ListLength is also the number of elements in the list InwardNormalList. Note that syntactically
PointList/ElementList and InwardNormalList must have the same number of elements.

If neither PointRange or PointList is specified in a particular BCDataSet_t substructure, List-
Length must be passed into it to determine the length of BC data arrays.

9.4 Boundary Condition Data Set Structure Definition: BCDataSet_t

BCDataSet_t contains Dirichlet and Neumann data for a single set of boundary-condition equations.
Its intended use is for simple boundary-condition types, where the equations imposed do not depend
on local flow conditions.

BCDataSet_t< int ListLength > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

BCTypeSimple_t BCTypeSimple ; (r)

BCData_t<ListLength> DirichletData ; (o)
BCData_t<ListLength> NeumannData ; (o)

GridLocation_t GridLocation ; (o/d)

90



AIAA R-101A-2005

IndexRange_t<IndexDimension> PointRange ; (o)
IndexArray_t<IndexDimension, ListLength, int> PointList ; (o)

ReferenceState_t ReferenceState ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance of
BCDataSet_t and shall not include the names BCTypeSimple, DataClass, DimensionalUnits,
DirichletData, GridLocation, NeumannData, PointList, PointRange, or ReferenceState.

2. BCTypeSimple is the only required field. All other fields are optional and the Descriptor_t
list may be empty.

3. GridLocation, PointRange, and PointList may only be used when BCDataSet_t is located
below a Zone_t structure in the database hierarchy, and thus has a parent BC_t structure.
GridLocation, PointRange, and PointList do not apply when BCDataSet_t is located below
a FamilyBC_t structure.

4. PointRange and PointList refer to either vertices or cell faces, depending on the value of
GridLocation. GridLocation may be set to Vertex, IFaceCenter, JFaceCenter, KFace-
Center, FaceCenter, CellCenter, or EdgeCenter. When GridLocation is set to Vertex,
then PointList or PointRange refer to node indices, for both structured and unstructured
grids. When GridLocation is set to FaceCenter, then PointList or PointRange refer to
face elements.

5. If GridLocation is absent, then PointRange and PointList are ignored. Similarly, if both
PointRange and PointList are absent, then GridLocation is ignored. In both cases, bound-
ary conditions are to be applied at the locations defining the BC patch in the parent BC_t
structure.

6. Only one of PointRange and PointList may be specified.

If neither PointRange or PointList is specified, the structure parameter ListLength must be
passed into BCDataSet_t, and specifies the number of vertices or cell faces making up the BC patch.
If PointRange or PointList is specified in BCDataSet_t, the structure function ListLength is used
to compute the corresponding number of vertices or cell faces. In either case, ListLength is passed
into the BCData_t structure, specifying the length of arrays containing BC data.

BCTypeSimple specifies the boundary-condition type, which gives general information on the bound-
ary-condition equations to be enforced. BCTypeSimple_t is defined in Section 9.7 along with the

91



AIAA R-101A-2005

meanings of all the BCTypeSimple values. BCTypeSimple is also used for matching boundary
condition data sets as discussed in Section 9.8.

Boundary-condition data is separated by equation type into Dirichlet and Neumann conditions.
Dirichlet boundary conditions impose the value of the given variables, whereas Neumann boundary
conditions impose the normal derivative of the given variables. The mechanics of specifying Dirichlet
and Neumann data for boundary conditions is covered in Section 9.9.

The substructures DirichletData and NeumannData contain boundary-condition data which may
be constant over the BC patch or defined locally at each vertex or cell face of the patch. For locally-
defined data, the locations at which the boundary conditions are to be applied may be specified
by PointRange or PointList, together with GridLocation. There should be a correspondence
between the locations defined under BCDataset_t and the locations defined under the parent BC_t
structure. For example, if the BC patch in a structured grid is defined by vertices, then the
BCDataSet information must either exist at the same vertex locations (for GridLocation = Vertex),
or else must exist at the corresponding cell face locations (for GridLocation = FaceCenter).

Reference quantities applicable to the set of boundary-condition data are contained in the Refer-
enceState structure. DataClass defines the default for the class of data contained in the boundary-
condition data. If the boundary conditions contain dimensional data, DimensionalUnits may be
used to describe the system of dimensional units employed. If present, these three entities take
precedence of all corresponding entities at higher levels of the hierarchy. These precedence rules
are further discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

9.5 Boundary Condition Data Structure Definition: BCData_t

BCData_t contains a list of variables and associated data for boundary-condition specification. Each
variable may be given as global data (i.e. a scalar) or local data defined at each grid point or cell
face of the BC patch. By convention all data specified in a given instance of BCData_t is to be
used in the same type of boundary-condition equation. For example, the use of separate BCData_t
substructures for Dirichlet and Neumann equations in the BCDataSet_t structure of the previous
section.

BCData_t< int ListLength > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

List( DataArray_t<DataType, 1, 1>
DataGlobal1 ... DataGlobalN ) ; (o)

List( DataArray_t<DataType, 1, ListLength>
DataLocal1 ... DataLocalN ) ; (o)

92



AIAA R-101A-2005

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within a
given instance of BCData_t and shall not include the names DataClass or DimensionalUnits.

2. There are no required elements; all three lists may be empty.

This structure definition shows separate lists for global verses local data. The global data is es-
sentially scalars, while the local data variables have size determined by the structure parameter
ListLength. For DataArray_t entities with standardized data-name identifiers listed in Annex A,
DataType is determined by convention. For user-defined variables, DataType is a user input.

Two important points need to be mentioned regarding this structure definition. First, this definition
allows a given instance of BCData_t to have a mixture of global and local data. For example,
if a user specifies Dirichlet data that has a uniform stagnation pressure but has a non-uniform
velocity profile, this structure allows the user to describe the stagnation pressure by a scalar in the
DataGlobal list and the velocity by an array in the DataLocal list. Second, the only distinction
between the lists (aside from default names, which will be seldom used) is the parameters passed
into the DataArray_t structure. Therefore, in actual implementation of this BCData_t structure it
may not be possible to distinguish between members of the global and local lists without querying
inside the DataArray_t substructures. Straightforward mapping onto the ADF or HDF database
will not provide any distinctions between the members of the two lists. This hopefully will not
cause any problems.

DataClass defines the default for the class of data contained in the boundary-condition data. If the
boundary-condition data is dimensional, DimensionalUnits may be used to describe the system
of dimensional units employed. If present, these two entities take precedence of all corresponding
entities at higher levels of the hierarchy. These precedence rules are further discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

9.6 Boundary Condition Property Structure Definition: BCProperty_t

BCProperty_t allows the recording of special properties associated with particular boundary con-
dition patches. At the current time, only two properties (WallFunction_t and Area_t) are in-
cluded, but extensions involving boundary conditions may be implemented as additional nodes
under BCProperty_t in the future.

93



AIAA R-101A-2005

BCProperty_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

WallFunction_t WallFunction ; (o)

Area_t Area ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within a
given instance of BCProperty_t and shall not include the names WallFunction or Area.

The WallFunction_t and Area_t data structures may be used to record properties associated with
the use of wall functions, or area-related boundary conditions such as bleed, respectively.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

9.6.1 Wall Function Structure Definition: WallFunction_t

The WallFunction_t data structure allows data associated with the use of wall function boundary
conditions to be recorded.

WallFunction_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

WallFunctionType_t WallFunctionType ; (r)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance of
WallFunction_t and shall not include the name WallFunctionType.

WallFunctionType_t is a required enumeration data structure that is used to define the type of
wall functions being used.

94



AIAA R-101A-2005

WallFunctionType_t := Enumeration(
Null,
Generic,
UserDefined ) ;

Because there is such a wide array of methods for employing wall functions (few of which are well-
documented), the type Generic is used to simply indicate that a wall function is employed, without
specifying details.

9.6.2 Area Structure Definition: Area_t

The Area_t data structure allows data associated with area-related boundary conditions such as
bleed to be recorded.

Area_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

AreaType_t AreaType ; (r)
DataArray_t<real, 1, 1> SurfaceArea ; (r)
DataArray_t<real, 1, 32> RegionName ; (r)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance of
Area_t and shall not include the names AreaType, RegionName, or SurfaceArea.

AreaType_t is a required enumeration data structure that is used to define the type of area being
defined.

AreaType_t := Enumeration(
Null,
BleedArea,
CaptureArea,
UserDefined ) ;

If AreaType is set to BleedArea, the value of SurfaceArea is the size of the current bleed surface.
Note that bleed is commonly used with wall boundary conditions. The bleed area is the surface
area of the boundary condition patch.

If AreaType is set to CaptureArea, then SurfaceArea represents the size of the current capture
surface. For inlet flows, for example, the capture area is the area of a fictitious surface in front

95



AIAA R-101A-2005

of the inlet in which mass is pulled into the inlet. This is used to calculate the mass flow for the
boundary condition patch based on the formula:

mass flow = MFR ρ∞U∞Acap

where MFR is the desired mass flow ratio and Acap is the capture area. Another interpretation
is the far-upstream cross-sectional area of the stream tube which feeds the inlet. Note that the
capture area is usually defined with an outflow boundary condition, which is commonly used at an
engine face.

The RegionName is character identifier, and is needed so that a specific region can span multiple
surfaces over multiple zones.

9.7 Boundary Condition Type Structure Definition: BCType_t

BCType_t is an enumeration type that identifies the boundary-condition equations to be enforced
at a given boundary location. BCType_t is a superset of two enumeration types, BCTypeSimple_t
and BCTypeCompound_t.

BCTypeSimple_t := Enumeration(
Null, BCGeneral, BCDirichlet, BCNeumann, BCExtrapolate, BCWallInviscid,
BCWallViscousHeatFlux, BCWallViscousIsothermal, BCWallViscous, BCWall,
BCInflowSubsonic, BCInflowSupersonic, BCOutflowSubsonic, BCOutflowSupersonic,
BCTunnelInflow, BCTunnelOutflow, BCDegenerateLine, BCDegeneratePoint,
BCSymmetryPlane, BCSymmetryPolar, BCAxisymmetricWedge, FamilySpecified,
UserDefined ) ;

BCTypeCompound_t := Enumeration(
Null, BCInflow, BCOutflow, BCFarfield, UserDefined ) ;

Any member of BCTypeSimple_t or BCTypeCompound_t is also a member of BCType_t. Simple
boundary-condition types are described by BCTypeSimple_t and compound types by BCTypeCom-
pound_t. Some members of BCType_t completely identify the equations to impose, while other
give a general description of the class of boundary-condition equations to impose. The specific
boundary-condition equations to enforce for each value of BCType_t are listed in Table 2 and
Table 3.

The subdivision of BCType_t is based on function. For simple boundary conditions, the equations
and data imposed are fixed; whereas, for compound boundary conditions different sets of equations
are imposed depending on local flow conditions at the boundary. This distinction requires additional
rules for dealing with simple and compound boundary-condition types. These rules are discussed
in Section 9.8.

For the inflow/outflow boundary-condition descriptions, 3-D inviscid compressible flow is assumed;
the 2-D equivalent should be obvious. These same boundary conditions are typically used for
viscous cases also. This ‘3-D Euler’ assumption will be noted wherever used.

In the following tables, Q is the solution vector, ~q is the velocity vector whose magnitude is q, the
unit normal to the boundary is n̂, and ∂()/∂n = n̂·∇ is differentiation normal to the boundary.

96



AIAA R-101A-2005

Table 2: Simple Boundary Condition Types

BCType_t or
BCTypeSimple_t Identifier

Boundary Condition Description

BCGeneral Arbitrary conditions on Q or ∂Q/∂n

BCDirichlet Dirichlet condition on Q vector

BCNeumann Neumann condition on ∂Q/∂n

BCExtrapolate Extrapolate Q from interior

BCWallInviscid Inviscid (slip) wall
• normal velocity specified (default: ~q · n̂ = 0)

BCWallViscousHeatFlux Viscous no-slip wall with heat flux
• velocity Dirichlet (default: q = 0)
• temperature Neumann (default: adiabatic, ∂T/∂n = 0)

BCWallViscousIsothermal Viscous no-slip, isothermal wall
• velocity Dirichlet (default: q = 0)
• temperature Dirichlet

BCWallViscous Viscous no-slip wall; special cases are
BCWallViscousHeatFlux and BCWallViscousIsothermal

• velocity Dirichlet (default: q = 0)
• Dirichlet or Neumann on temperature

BCWall General wall condition; special cases are BCWallInviscid,
BCWallViscous, BCWallViscousHeatFlux and
BCWallViscousIsothermal

BCInflowSubsonic Inflow with subsonic normal velocity
• specify 4; extrapolate 1 (3-D Euler)

BCInflowSupersonic Inflow with supersonic normal velocity
• specify 5; extrapolate 0 (3-D Euler)

Same as BCDirichlet

BCOutflowSubsonic Outflow with subsonic normal velocity
• specify 1; extrapolate 4 (3-D Euler)

BCOutflowSupersonic Outflow with supersonic normal velocity
• specify 0; extrapolate 5 (3-D Euler)

Same as BCExtrapolate

BCTunnelInflow Tunnel inlet (subsonic normal velocity)
• specify cross-flow velocity, stagnation enthalpy, entropy
• extrapolate 1 (3-D Euler)

Continued on next page

97



AIAA R-101A-2005

Table 2: Simple Boundary Condition Types (Continued)

BCType_t or
BCTypeSimple_t Identifier

Boundary Condition Description

BCTunnelOutflow Tunnel exit (subsonic normal velocity)
• specify static pressure
• extrapolate 4 (3-D Euler)

BCDegenerateLine Face degenerated to a line

   
   

  

        

C
C
C
C
C
C
���HHHHHH

L
L
L
L

BCDegeneratePoint Face degenerated to a point

   
   

  

        

C
C
C
C
C
C
XXXXXXXXX

L
L
L
L

BCSymmetryPlane Symmetry plane; face should be coplanar
• density, pressure: ∂()/∂n = 0
• tangential velocity: ∂(~q×n̂)/∂n = 0
• normal velocity: ~q · n̂ = 0

BCSymmetryPolar Polar-coordinate singularity line; special case of
BCDegenerateLine where degenerate face is a straight line
and flowfield has polar symmetry; ŝ is singularity line
tangential unit vector

• normal velocity: ~q×ŝ = 0
• all others: ∂()/∂n = 0, n normal to ŝ

BCAxisymmetricWedge Axisymmetric wedge; special case of BCDegenerateLine
where degenerate face is a straight line

FamilySpecified A boundary condition type is being specified for the family to
which the current boundary belongs. A FamilyName_t
specification must exist under BC_t, corresponding to a
Family_t structure under CGNSBase_t. Under the Family_t
structure there must be a FamilyBC_t structure specifying a
valid BCType (other than FamilySpecified!). If any of these
are absent, the boundary condition type is undefined.

98



AIAA R-101A-2005

Table 3: Compound Boundary Condition Types

BCType_t or
BCTypeCompound_t Identifier

Boundary Condition Description

BCInflow Inflow, arbitrary normal Mach; test on normal Mach, then
perform one of: BCInflowSubsonic, BCInflowSupersonic

BCOutflow Outflow, arbitrary normal Mach; test on normal Mach,
then perform one of: BCOutflowSubsonic,
BCOutflowSupersonic

BCFarfield Farfield inflow/outflow, arbitrary normal Mach; test on
normal velocity and normal Mach, then perform one of:
BCInflowSubsonic, BCInflowSupersonic,
BCOutflowSubsonic, BCOutflowSupersonic

9.8 Matching Boundary Condition Data Sets

The BC_t structure allows for a arbitrary list of boundary-condition data sets, described by the
BCDataSet_t structure. For simple boundary conditions, a single data set must be chosen from
a list that may contain more than one element. Likewise, for a compound boundary condition, a
limited number of data sets must be chosen and applied appropriately. The mechanism for proper
choice of data sets is controlled by the BCType field of the BC_t structure, the BCTypeSimple field
of the BCDataSet_t structure, and the boundary-condition type association table (Table 4). In the
following discussion, we will use the ‘/’ notation for fields or elements of a structure type.

BC_t is used for both simple and compound boundary conditions; hence, the field BC_t/BCType
is of type BCType_t. Conversely, the substructure BCDataSet_t is intended to enforce a single
set of boundary-condition equations independent of local flow conditions (i.e. it is appropriate
only for simple boundary conditions). This is why the field BCDataSet_t/BCTypeSimple is of type
BCTypeSimple_t and not BCType_t. The appropriate choice of data sets is determined by matching
the field BC_t/BCType with the field BCDataSet_t/BCTypeSimple as specified in Table 4.

For simple boundary conditions, a single match from the list of BCDataSet_t instances is required.
For all BCTypeSimple_t identifiers, except BCInflowSupersonic and BCOutflowSupersonic, an
exact match is necessary. BCInflowSupersonic will match itself or BCDirichlet; BCOutflowSu-
personic will match itself or BCExtrapolate.

For compound boundary conditions, the association table specifies which simple boundary-condition
types are appropriate. Since compound boundary conditions enforce different boundary-condition
equation sets depending on local flow conditions, several instances of BCDataSet_t will be matched
for each BCTypeCompound_t identifier. The accompanying rule determines which of the matching
data sets to apply at a given location on the BC patch.

This provides a general procedure applicable to both BCTypeSimple_t and BCTypeCompound_t situ-
ations. For a given BC_t/BCType use those instances of BCDataSet_t whose field BCDataSet_t/BC-
TypeSimple matches according to Table 4. Apply the matching data set or sets as prescribed by
the appropriate usage rule.

99



AIAA R-101A-2005

Table 4: Associated Boundary Condition Types and Usage Rules

BCType_t Identifier Associated BCTypeSimple_t Identifiers and Usage Rules

BCInflow BCInflowSupersonic
BCInflowSubsonic

Usage Rule:
• if supersonic normal Mach, choose BCInflowSupersonic;
• else, choose BCInflowSubsonic

BCOutflow BCOutflowSupersonic
BCOutflowSubsonic

Usage Rule:
• if supersonic normal Mach, choose BCOutflowSupersonic;
• else, choose BCOutflowSubsonic

BCFarfield BCInflowSupersonic
BCInflowSubsonic
BCOutflowSupersonic
BCOutflowSubsonic

Usage Rule:
• if inflow and supersonic normal Mach, choose
BCInflowSupersonic;

• else if inflow, choose BCInflowSubsonic;
• else if outflow and supersonic normal Mach, choose
BCOutflowSupersonic;

• else, choose BCOutflowSubsonic

BCInflowSupersonic BCInflowSupersonic
BCDirichlet

Usage Rule:
• choose either; BCInflowSupersonic takes precedence

BCOutflowSupersonic BCOutflowSupersonic
BCExtrapolate

Usage Rule:
• choose either; BCOutflowSupersonic takes precedence

All others Self-matching

Although we present a strict division between the two categories of boundary-condition types, we re-
alize that some overlap may exist. For example, some of the more general simple boundary-condition
types, such as BCWall, may include a situation of inflow/outflow (say if the wall is porous). These
complications require further guidelines on appropriate definition and use of boundary-condition
types. The real distinctions between BCTypeSimple_t and BCTypeCompound_t are as follows:

100



AIAA R-101A-2005

• BCTypeSimple_t identifiers always match themselves; BCTypeCompound_t identifiers never
match themselves.

• BCTypeSimple_t identifiers always produce a single match; BCTypeCompound_t will produce
multiple matches.

• The usage rule for BCTypeSimple_t identifiers is always trivial—apply the single matching
data set regardless of local flow conditions.

Therefore, any boundary condition that involves application of different data sets depending on
local flow conditions should be classified BCTypeCompound_t. If a type that we have classified
BCTypeSimple_t is used as a compound type (BCWall for a porous wall is an example), then it
should somehow be reclassified. One option is to define a new BCTypeCompound_t identifier and
provide associated BCTypeSimple_t types and a usage rule. Another option may be to allow some
identifiers to be both BCTypeSimple_t and BCTypeCompound_t and let their appropriate use be
based on context. This is still undetermined.

9.9 Boundary Condition Specification Data

For a given simple boundary condition (i.e. one that is not dependent on local flow conditions),
the database provides a set of boundary-condition equations to be enforced through the structure
definitions for BCDataSet_t and BCData_t (Section 9.4 and Section 9.5). Apart from the boundary-
condition type, the precise equations to be enforced are described by boundary-condition solution
data. These specified solution data are arranged by ‘equation type’:

Dirichlet: Q = (Q)specified

Neumann: ∂Q/∂n = (∂Q/∂n)specified

The DirichletData and NeumannData entities of BCData_t list both the solution variables involved
in the equations (through the data-name identifier conventions of Annex A) and the specified
solution data.

Two issues need to be addressed for specifying Dirichlet or Neumann boundary-condition data.
The first is whether the data is global or local:

Global BC data: Data applied globally to the BC patch; for example, specifying a uniform
total pressure at an inflow boundary

Local BC data: Data applied locally at each vertex or cell face of the BC patch; an example
of this is varying total pressure specified at each grid point at an inflow
boundary

The second issue is describing the actual solution quantities that are to be specified. Both of these
issues are addressed by use of the DataArray_t structure.

101



AIAA R-101A-2005

For some types of boundary conditions, many different combinations of solution quantities could
be specified. For example, BCInflowSubsonic requires 4 solution quantities to be specified in 3-D,
but what those 4 quantities are varies with applications (e.g. internal verses external flows) and
codes. We propose the convention that the actual data being specified for any BCType is given by
the list of DataArray_t entities included in DirichletData and NeumannData structures (actually
by the identifier attached to each instance of DataArray_t). This frees us from having to define
many versions of a given BCType (e.g. BCInflowSubsonic1, BCInflowSubsonic2, etc.), where each
has a precisely defined set of Dirichlet data. We are left with the easier task of defining how many
Dirichlet or Neumann quantities must be provided for each BCType.

An example of using DataArray_t-identifier conventions to describe BC specification data is the
following: subsonic inflow with uniform stagnation pressure, mass flow and cross-flow angle speci-
fied; the Dirichlet data are stagnation pressure = 2.56, mass flow = 1.34, and cross-flow angle has
a y-component of 0.043 and a z-component of 0.02 (ignore dimensional-units or normalization for
the present). The specified solution variables and associated data are described as shown:

BCData_t<ListLength=?> DirichletData =
{{
DataArray_t<real, 1, 1> PressureStagnation = {{ Data(real, 1, 1) = 2.56 }} ;
DataArray_t<real, 1, 1> MassFlow = {{ Data(real, 1, 1) = 1.34 }} ;
DataArray_t<real, 1, 1> VelocityAngleY = {{ Data(real, 1, 1) = 0.043 }} ;
DataArray_t<real, 1, 1> VelocityAngleZ = {{ Data(real, 1, 1) = 0.02 }} ;
}} ;

Basically, this states that DirichletData contains four instances of DataArray_t with identifiers
or names PressureStagnation, MassFlow, VelocityAngleY and VelocityAngleZ. Each DataAr-
ray_t structure entity contains a single floating-point value; these are the Dirichlet data for the
BC. Note that Data(real, 1, 1) means a single floating-point value.

The global verses local data issue can be easily handled by storing either a scalar, as shown above,
for the global BC data case; or storing an array for the local BC data case. Storing an array of
local BC data allows the capability for specifying non-constant solution profiles, such as ‘analytic’
boundary-layer profiles or profiles derived from experimental data. For the above example, if the
stagnation pressure is instead specified at every vertex of the boundary-condition patch the following
results:

BCData_t<ListLength=99> DirichletData =
{{
DataArray_t<real, 1, 99> PressureStagnation =
{{ Data(real, 1, 99) = (PTOT(n), n=1,99) }} ;

DataArray_t<real, 1, 1> MassFlow = {{ Data(real, 1, 1) = 1.34 }} ;
DataArray_t<real, 1, 1> VelocityAngleY = {{ Data(real, 1, 1) = 0.043 }} ;
DataArray_t<real, 1, 1> VelocityAngleZ = {{ Data(real, 1, 1) = 0.02 }} ;
}} ;

where, say, the boundary face is logically rectangular and contains 11×9 vertices and the stagnation
pressure at the vertices is given by the array PTOT().

102



AIAA R-101A-2005

To facilitate implementation of boundary conditions into existing flow solvers, we adopt the con-
vention that if no boundary-condition data is specified, then flow solvers are free to enforce any
appropriate boundary-condition equations. This includes situations where entities of BCDataSet_t,
BCData_t or DataArray_t are absent within the boundary-condition hierarchy. By convention,
if no BCDataSet entities are present, then application codes are free to enforce appropriate BCs
for the given value of BCType. Furthermore, if the entities DirichletData and NeumannData are
not present in an instance of BCDataSet_t, or if insufficient data is present in DirichletData or
NeumannData (e.g. if only one Dirichlet variable is present for a subsonic inflow condition), then ap-
plication codes are free to fill out the boundary-condition data as appropriate for the BCTypeSimple
identifier.

The various levels of BC implementation allowed are shown in Figure 5, from the lowest level in
which the application codes interpret the BCType, to the fully SIDS-compliant BC implementation
which completely defines the BC within the CGNS file.

ZoneBC_t

BC_t

IndexRange_t BCType_t

(a) Lowest-level allowed (applica-
tion code interprets meaning of
BCType)

ZoneBC_t

BC_t

IndexRange_t BCType_t BCDataSet_t BCDataSet_t

DirichletData
(BCData_t)

NeumannData
(BCData_t) BCTypeSimple_t

DataArray_tDataArray_t

(b) Fully SIDS-compliant

Figure 5: Boundary Condition Implementation Levels

An alternative approach to the present design could be to list all the solution variables and data
(as DataArray_t-like structures) for the boundary condition, and contain descriptive tags in each
one to indicate if they are Dirichlet or Neumann data. We have not taken this approach. We think
grouping boundary-condition data by ‘equation type’ as we have done better allows for future
extension to other types of boundary conditions (e.g. 2nd-order non-reflecting BC’s that result in
P.D.E.’s to be solved at the boundary).

9.10 Boundary Condition Examples

This section contains boundary-condition examples with increasing complexity. Included is the
most simple BC_t entity and one of the most complex. The examples show situations of local

103



AIAA R-101A-2005

and global boundary-condition data, simple and compound boundary-condition types, and multiple
boundary-condition data sets that must be matched with the appropriate boundary-condition type.

Example 9-A: Symmetry Plane

Symmetry plane for a patch on the i-min face of a 3-D structured zone.

! IndexDimension = 3
BC_t<3,3> BC1 =
{{
BCType_t BCType = BCSymmetryPlane ;

IndexRange_t<3> PointRange =
{{
int[3] Begin = [1,1,1 ] ;
int[3] End = [1,9,17] ;
}} ;

}} ;

Since the boundary-condition equations to be enforced are completely defined by the boundary-
condition type BCSymmetryPlane, no other information needs to be provided, except for the extent
of the BC patch. The BC patch is specified by PointRange with a beginning index of (1,1,1) and
an ending index of (1,9,17). By default, these refer to vertices.

Example 9-B: Viscous Solid Wall I

A viscous solid wall for a 3-D structured zone, where a Dirichlet condition is enforced for temper-
ature; the wall temperature for the entire wall is specified to be 273 K. The BC patch is on the
j-min face and is bounded by the indices (1,1,1) and (33,1,9).

! IndexDimension = 3
BC_t<3,3> BC2 =
{{
BCType_t BCType = BCWallViscousIsothermal ;

IndexRange_t<3> PointRange =
{{
int[3] Begin = [1 ,1,1] ;
int[3] End = [33,1,9] ;
}} ;

! ListLength = 33*9 = 297
BCDataSet_t<297> BCDataSet1 =
{{
BCTypeSimple_t BCTypeSimple = BCWallViscousIsothermal ;

! Data array length = ListLength = 297

104



AIAA R-101A-2005

BCData_t<297> DirichletData =
{{
DataArray_t<real, 1, 1> Temperature =
{{
Data(real, 1, 1) = 273. ;

DataClass_t DataClass = Dimensional ;

DimensionalUnits_t DimensionalUnits =
{{
MassUnits = Null ;
LengthUnits = Null ;
TimeUnits = Null ;
TemperatureUnits = Kelvin ;
AngleUnits = Null ;
}} ;

}} ;
}} ;

}} ;
}} ;

This is an example of a simple boundary-condition type, BCWallViscousIsothermal. By default
there is a zero Dirichlet condition on the velocity, and BCDataSet1 states there is a Dirichlet condi-
tion on temperature with a global value of 273 K. The data set contains a single BCData_t entity,
called DirichletData, meaning a (possibly empty) collection of Dirichlet conditions should be en-
forced. Within DirichletData, there is a single DataArray_t entity; this narrows the specification
to a single Dirichlet condition. This lone entity has the identifier Temperature, which by conventions
defined in Annex A is the identifier for static temperature. The data contained in Temperature
is a floating-point scalar with a value of 273. The qualifiers DataClass and DimensionalUnits
specifies that the temperature is dimensional with units of Kelvin.

Since BCWallViscousIsothermal is a simple boundary-condition type, the appropriate data set
contains a BCTypeSimple entity whose value is BCWallViscousIsothermal. For this example, only
a single data set is provided, and this data set has the correct boundary-condition type. This is an
example of a trivial data-set match.

Apart from velocity and temperature, additional ‘numerical’ boundary conditions are typically
required by Navier-Stokes flow solvers, but none are given here; therefore, a code is free to implement
other additional boundary conditions as desired.

Although the boundary-condition data is global, we include in this example structure parameters
that are the lengths of potential local-data arrays. Comments are added to the example with the
‘!’ notation to document the structure parameters. The BC_t structure function ListLength is
evaluated based on PointRange. Since GridLocation is not specified in BC2, any local data is at
vertices by default. The entity Temperature contains global data, so the value of ListLength is
unused in DirichletData.

105



AIAA R-101A-2005

This example raises the question of whether unused structure parameters are required in structure
entities. The answer is no. We included them here for completeness. The purpose of structure
parameters is to mimic the need to define elements of a entity based on information contained
elsewhere (at a higher level) in the CGNS database. When this need is not present in a given
instance of a structure entity, the structure parameters are superfluous. In some of the following
examples, structure parameters that are superfluous or otherwise not needed are denoted by ‘?’.

Example 9-C: Subsonic Inflow

Subsonic inflow for a 2-D structured zone: The BC patch is on the i-min face and includes j ∈ [2, 7].
As prescribed by the boundary-condition type, three quantities must be specified. Uniform entropy
and stagnation enthalpy are specified with values of 0.94 and 2.85, respectively. A velocity profile
is specified at face midpoints, given by the array v_inflow(j). No dimensional or nondimensional
information is provided.

! IndexDimension = 2
BC_t<2,?> BC3 =
{{
BCType_t BCType = BCInflowSubsonic ;

IndexRange_t<2> ElementRange =
{{
int[2] Begin = [1,2] ;
int[2] End = [1,6] ;
}} ;

! ListLength = 5
BCDataSet_t<5> BCDataSet1 =
{{
BCTypeSimple_t BCTypeSimple = BCInflowSubsonic ;

! Data array length = ListLength = 5
BCData_t<5> DirichletData =
{{
DataArray_t<real, 1, 1> EntropyApprox =
{{
Data(real, 1, 1) = 0.94 ;
}} ;

DataArray_t<real, 1, 1> EnthalpyStagnation =
{{
Data(real, 1, 1) = 2.85 ;
}} ;

DataArray_t<real, 1, 5> VelocityY =
{{

106



AIAA R-101A-2005

Data(real, 1, 5) = (v_inflow(j), j=3,7) ;
}} ;

}} ;
}} ;

}} ;

This is another example of a simple boundary-condition type. The primary additional complexity
included in this example is multiple Dirichlet conditions with one containing local data. Dirich-
letData contains three DataArray_t entities named EntropyApprox, EnthalpyStagnation and
VelocityY. This specifies three Dirichlet boundary conditions to be enforced, and the names iden-
tify the solution quantities to set. Since both EntropyApprox and EnthalpyStagnation have an
array-length structure parameter of one, they identify global data, and the values are provided.
VelocityY is an array of data values and contains the values in v_inflow(). The length of the
array is given by ListLength, which represents the number of cell faces because BC3 is specified
using ElementRange. Note that the beginning and ending indices on the array v_inflow() are
unimportant (they are user inputs); there just needs to be five values provided.

Example 9-D: Outflow

Outflow boundary condition with unspecified normal Mach number for an i-max face of a 3-D
structured zone: for subsonic outflow, a uniform pressure is specified; for supersonic outflow, no
boundary-condition equations are specified.

! IndexDimension = 3
BC_t<3,3> BC4 =
{{
BCType_t BCType = BCOutflow ;

IndexRange_t<3> PointRange = {{ }} ;

BCDataSet_t<?> BCDataSetSubsonic =
{{
BCTypeSimple_t BCTypeSimple = BCOutflowSubsonic ;

BCData_t<?> DirichletData =
{{
DataArray_t<real, 1, 1> Pressure = {{ }} ;
}} ;

}} ;

BCDataSet_t<?> BCDataSetSupersonic =
{{
BCTypeSimple_t BCTypeSimple = BCOutflowSupersonic ;
}} ;

}} ;

107



AIAA R-101A-2005

This is an example of a complex boundary-condition type; the equation set to be enforced depends
on the local flow conditions, namely the Mach number normal to the boundary. Two data sets
are provided, BCDataSetSubsonic and BCDataSetSupersonic; recall the names are unimportant
and are user defined. The first data set has a boundary-condition type of BCOutflowSubsonic
and prescribes a global Dirichlet condition on static pressure. Any additional boundary condi-
tions needed may be applied by a flow solver. The second data set has a boundary-condition
type of BCOutflowSupersonic with no additional boundary-condition equation specification. Typ-
ically, all solution quantities are extrapolated from the interior for supersonic outflow. From
the boundary-condition type association table (Table 4), BCOutflow requires two data sets with
boundary-condition types BCOutflowSubsonic and BCOutflowSupersonic. The accompanying us-
age rule states that the data set for BCOutflowSubsonic should be used for a subsonic normal
Mach number; otherwise, the data set for BCOutflowSupersonic should be enforced.

Any additional data sets with boundary-condition types other than BCOutflowSubsonic or BCOut-
flowSupersonic could be provided (the definition of BC_t allows an arbitrary list of BCDataSet_t
entities); however, they should be ignored by any code processing the boundary-condition infor-
mation. Another caveat is that providing two data sets with the same simple boundary-condition
type would cause indeterminate results — which one is the correct data set to apply?

The actual global data value for static pressure is not provided; an abbreviated form of the Pressure
entity is shown. This example also uses the ‘?’ notation for unused data-array-length structure
parameters.

Example 9-E: Farfield

Farfield boundary condition with arbitrary flow conditions for a j-max face of a 2-D structured zone:
If subsonic inflow, specify entropy, vorticity and incoming acoustic characteristics; if supersonic
inflow specify entire flow state; if subsonic outflow, specify incoming acoustic characteristic; and
if supersonic outflow, extrapolate all flow quantities. None of the extrapolated quantities for the
different boundary condition possibilities need be stated.

BC_t<2,2> BC5 =
{{
BCType_t BCType = BCFarfield ;

IndexRange_t<2> PointRange = {{ }} ;

int[2] InwardNormalIndex = [0,-1] ;

BCDataSet_t<?> BCDataSetInflowSupersonic =
{{
BCTypeSimple_t BCTypeSimple = BCInflowSupersonic ;
}} ;

BCDataSet_t<?> BCDataSetInflowSubsonic =
{{
BCTypeSimple_t BCTypeSimple = BCInflowSubsonic ;

108



AIAA R-101A-2005

BCData<?> DirichletData =
{{
DataArray_t<real, 1, 1> CharacteristicEntropy = {{ }} ;
DataArray_t<real, 1, 1> CharacteristicVorticity1 = {{ }} ;
DataArray_t<real, 1, 1> CharacteristicAcousticPlus = {{ }} ;
}} ;

}} ;

BCDataSet_t<?> BCDataSetOutflowSupersonic =
{{
BCTypeSimple_t BCTypeSimple = BCOutflowSupersonic ;
}} ;

BCDataSet_t<?> BCDataSetOutflowSubsonic =
{{
BCTypeSimple_t BCTypeSimple = BCOutflowSubsonic ;

BCData<?> DirichletData =
{{
DataArray_t<real, 1, 1> CharacteristicAcousticMinus = {{ }} ;
}} ;

}} ;
}} ;

The farfield boundary-condition type is the most complex of the compound boundary-condition
types. BCFarfield requires four data sets; these data sets must contain the simple boundary-
condition types BCInflowSupersonic, BCInflowSubsonic, BCOutflowSupersonic and BCOutflow-
Subsonic. This example provides four appropriate data sets. The usage rule given for BCFarfield
in Table 4 states which set of boundary-condition equations to be enforced based on the normal
velocity and normal Mach number.

The data set for supersonic-inflow provides no information other than the boundary-condition type.
A flow solver is free to apply any conditions that are appropriate; typically all solution quantities are
set to freestream reference state values. The data set for subsonic-inflow states that three Dirichlet
conditions should be enforced; the three data identifiers provided are among the list of conventions
given in Annex A.5. The data set for supersonic-outflow only provides the boundary-condition type,
and the data set for subsonic-outflow provides one Dirichlet condition on the incoming acoustic
characteristic, CharacteristicAcousticMinus.

Also provided in the example is the inward-pointing computational-coordinate normal; the normal
points in the −j direction, meaning the BC patch is a j-max face. This information could also be
obtained from the BC patch description given in IndexRange.

Note that this example shows only the overall layout of the boundary-condition entity. IndexRange
and all DataArray_t entities are abbreviated, and all unused structure functions are not evaluated.

109



AIAA R-101A-2005

Example 9-F: Viscous Solid Wall II

There are circumstances when a user may wish to define a BC patch using vertices (under BC_t),
but store the BC data at face centers (under BCDataSet_t). The following example is similar to
Example 9-B, with the exception that the Dirichlet data for temperature is stored at face centers
rather than at vertices.

As before, the example is a viscous solid wall in a 3-D structured zone, where a Dirichlet condition
is enforced for temperature; the wall temperature for the entire wall is specified to be 273 K. The
BC patch is on the j-min face and is bounded by the indices (1,1,1) and (33,1,9).

! IndexDimension = 3
BC_t<3,3> BC2 =
{{
BCType_t BCType = BCWallViscousIsothermal ;

! Grid location is Vertex by default
IndexRange_t<3> PointRange =
{{
int[3] Begin = [1 ,1,1] ;
int[3] End = [33,1,9] ;
}} ;

! ListLength = 33*9 = 297
BCDataSet_t<297> BCDataSet1 =
{{
BCTypeSimple_t BCTypeSimple = BCWallViscousIsothermal ;

GridLocation_t GridLocation = FaceCenter ;
IndexRange_t<3> PointRange =

int[3] Begin = [1 ,1,1] ;
int[3] End = [32,1,8] ;
;

! ListLength = 32*8 = 256
BCData_t<256> DirichletData =
{{
DataArray_t<real, 1, 1> Temperature =
{{
Data(real, 1, 1) = 273. ;

DataClass_t DataClass = Dimensional ;

DimensionalUnits_t DimensionalUnits =
{{

110



AIAA R-101A-2005

MassUnits = Null ;
LengthUnits = Null ;
TimeUnits = Null ;
TemperatureUnits = Kelvin ;
AngleUnits = Null ;
}} ;

}} ;
}} ;

}} ;
}} ;

As in Example 9-B, although the boundary-condition data is global, we include in this example
structure parameters that are the lengths of potential local-data arrays. In BC_t, GridLocation is
not specified, and thus is Vertex by default. The structure function ListLength is 297, based on
the specification of PointRange, and that value is passed to BCDataSet_t.

In this example PointRange is specified in BCDataSet_t, so the ListLength passed into it from
BC_t is not used. In BCDataSet_t, GridLocation is specified as FaceCenter, and PointRange is
set accordingly. The corresponding value of ListLength is 256, which is passed into BCData_t.

As before, in BCData_t the entity Temperature contains global data, so the value of ListLength
is unused.

111



AIAA R-101A-2005

10 Governing Flow Equations

This section provides structure type definitions for describing the governing flow-equation set as-
sociated with the database. The description includes the general class of governing equations, the
turbulent closure equations, the gas and chemistry models, the viscosity and thermal-conductivity
models, and the electromagnetics models. Included with each equation description are associated
constants. The structure definitions attempt to balance the opposing requirements for future growth
and extensibility with initial ease of implementation. Included in the final section (Section 10.10)
are examples of flow-equation sets.

The intended use of these structures initially is primarily for archival purposes and to provide
additional documentation of the flow solution. If successful in this role, it is foreseeable that these
flow-equation structures may eventually be also used as inputs for grid generators, flow solvers, and
post-processors.

10.1 Flow Equation Set Structure Definition: FlowEquationSet_t

FlowEquationSet_t is a general description of the governing flow equations. It includes the dimen-
sionality of the governing equations, and the collection of specific equation-set descriptions covered
in subsequent sections. It can be a child node of either CGNSBase_t or Zone_t (or both).

FlowEquationSet_t< int CellDimension > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

int EquationDimension ; (o)

GoverningEquations_t<CellDimension> GoverningEquations ; (o)

GasModel_t GasModel ; (o)

ViscosityModel_t ViscosityModel ; (o)

ThermalConductivityModel_t ThermalConductivityModel ; (o)

TurbulenceClosure_t TurbulenceClosure ; (o)

TurbulenceModel_t<CellDimension> TurbulenceModel ; (o)

ThermalRelaxationModel_t ThermalRelaxationModel ; (o)

ChemicalKineticsModel_t ChemicalKineticsModel ; (o)

EMElectricFieldModel_t EMElectricFieldModel ; (o)

112



AIAA R-101A-2005

EMMagneticFieldModel_t EMMagneticFieldModel ; (o)

EMConductivityModel_t EMConductivityModel ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance
of FlowEquationSet_t and shall not include the names EMConductivityModel, EMElec-
tricFieldModel, EMMagneticFieldModel, EquationDimension, GoverningEquations, Gas-
Model, ViscosityModel, ThermalConductivityModel, TurbulenceClosure, Turbulence-
Model, ThermalRelaxationModel, ChemicalKineticsModel, DataClass, or Dimensional-
Units.

2. There are no required elements for FlowEquationSet_t.

FlowEquationSet_t requires a single structure parameter, CellDimension, to identify the dimen-
sionality of index arrays for structured grids. This parameter is passed onto several substructures.

EquationDimension is the dimensionality of the governing equations; it is the number of spatial
variables describing the flow. GoverningEquations describes the general class of flow equations.
GasModel describes the equation of state, and ViscosityModel and ThermalConductivityModel
describe the auxiliary relations for molecular viscosity and the thermal conductivity coefficient.
TurbulenceClosure and TurbulenceModel describe the turbulent closure for the Reynolds-aver-
aged Navier-Stokes equations. ThermalRelaxationModel and ChemicalKineticsModel describe
the equations used to model thermal relaxation and chemical kinetics. EMElectricFieldModel,
EMMagneticFieldModel, and EMConductivityModel describe the equations used to model electro-
magnetics.

DataClass defines the default for the class of data contained in the flow-equation set. For any data
that is dimensional, DimensionalUnits may be used to describe the system of dimensional units
employed. If present, these two entities take precedence of all corresponding entities at higher levels
of the hierarchy. These precedence rules are further discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

10.2 Governing Equations Structure Definition: GoverningEquations_t

GoverningEquations_t describes the class of governing flow equations associated with the solution.

113



AIAA R-101A-2005

GoverningEquationsType_t := Enumeration(
Null,
FullPotential,
Euler,
NSLaminar,
NSTurbulent,
NSLaminarIncompressible,
NSTurbulentIncompressible,
UserDefined ) ;

GoverningEquations_t< int CellDimension > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

GoverningEquationsType_t GoverningEquationsType ; (r)

int[CellDimension*(CellDimension + 1)/2] DiffusionModel ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance of
GoverningEquations_t and shall not include the name DiffusionModel.

2. GoverningEquationsType is the only required element.
3. The length of the DiffusionModel array is as follows: in 1-D it is int[1]; in 2-D it is

int[3]; and in 3-D it is int[6]. For unstructured zones, DiffusionModel is not supported,
and should not be used.

GoverningEquations_t requires a single structure parameter, CellDimension. It is used to define
the length of the array DiffusionModel.

DiffusionModel describes the viscous diffusion terms modeled in the flow equations, and is applica-
ble only to the Navier-Stokes equations with structured grids. Typically, thin-layer approximations
include only the diffusion terms in one or two computational-coordinate directions. Diffusion-
Model encodes the coordinate directions that include second-derivative and cross-derivative diffusion
terms. The first CellDimension elements are second-derivative terms and the remainder elements
are cross-derivative terms. Allowed values for individual elements in the array DiffusionModel
are 0 and 1; a value of 1 indicates the diffusion term is modeled, and 0 indicates that they are not
modeled. In 3-D, the encoding of DiffusionModel is as follows:

114



AIAA R-101A-2005

Element Modeled Terms

n = 1 Diffusion terms in i (∂2/∂ξ2)
n = 2 Diffusion terms in j (∂2/∂η2)
n = 3 Diffusion terms in k (∂2/∂ζ2)
n = 4 Cross-diffusion terms in i-j (∂2/∂ξ∂η and ∂2/∂η∂ξ)
n = 5 Cross-diffusion terms in j-k (∂2/∂η∂ζ and ∂2/∂ζ∂η)
n = 6 Cross-diffusion terms in k-i (∂2/∂ζ∂ξ and ∂2/∂ξ∂ζ)

where derivatives in the i, j and k computational-coordinates are ξ, η and ζ, respectively. The
full Navier-Stokes equations in 3-D are indicated by DiffusionModel = [1,1,1,1,1,1], and the
thin-layer equations including only diffusion in the j-direction are [0,1,0,0,0,0].

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

10.3 Thermodynamic Gas Model Structure Definition: GasModel_t

GasModel_t describes the equation of state model used in the governing equations to relate pressure,
temperature and density.

GasModelType_t := Enumeration(
Null,
Ideal,
VanderWaals,
CaloricallyPerfect,
ThermallyPerfect,
ConstantDensity,
RedlichKwong,
UserDefined ) ;

GasModel_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

GasModelType_t GasModelType ; (r)

List( DataArray_t<DataType, 1, 1> DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

115



AIAA R-101A-2005

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within a
given instance of GasModel_t and shall not include the names DataClass or Dimensional-
Units.

2. GasModelType is the only required element.
3. The GasModelType enumeration name Ideal implies a calorically perfect single-component

gas, but the more descriptive name CaloricallyPerfect is generally preferred.

For a perfect gas (GasModelType = CaloricallyPerfect), the pressure, temperature and density
are related by,

p = ρRT,

where R is the ideal gas constant. Related quantities are the specific heat at constant pressure (cp),
specific heat at constant volume (cv) and specific heat ratio (γ = cp/cv). The gas constant and
specific heats are related by R = cp− cv. Data-name identifiers associated with the perfect gas law
are listed in Table 5.

Table 5: Data-Name Identifiers for Perfect Gas

Data-Name Identifier Description Units

IdealGasConstant Ideal gas constant (R) L2/(T2Θ)
SpecificHeatRatio Ratio of specific heats (γ = cp/cv) -
SpecificHeatVolume Specific heat at constant volume (cv) L2/(T2Θ)
SpecificHeatPressure Specific heat at constant pressure (cp) L2/(T2Θ)

If it is desired to specify any of these identifiers in a CGNS database, they should be defined as
DataArrays under GasModel_t.

The dimensional units are defined as follows: M is mass, L is length, T is time and Θ is temperature.
These are further described in Annex A.

DataClass defines the default for the class of data contained in the thermodynamic gas model. For
any data that is dimensional, DimensionalUnits may be used to describe the system of dimensional
units employed. If present, these two entities take precedence of all corresponding entities at higher
levels of the hierarchy. These precedence rules are further discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

10.4 Molecular Viscosity Model Structure Definition: ViscosityModel_t

ViscosityModel_t describes the model for relating molecular viscosity (µ) to temperature.

116



AIAA R-101A-2005

ViscosityModelType_t := Enumeration(
Null,
Constant,
PowerLaw,
SutherlandLaw,
UserDefined ) ;

ViscosityModel_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

ViscosityModelType_t ViscosityModelType ; (r)

List( DataArray_t<DataType, 1, 1> DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within a
given instance of ViscosityModel_t and shall not include the names DataClass or Dimen-
sionalUnits.

2. ViscosityModelType is the only required element.

The molecular viscosity models are as follows: Constant states that molecular viscosity is constant
throughout the field and is equal to some reference value (µ = µref); PowerLaw states that molecular
viscosity follows a power-law relation,

µ = µref

(
T

Tref

)n

and SutherlandLaw is Sutherland’s Law for molecular viscosity,

µ = µref

(
T

Tref

)3/2 Tref + Ts

T + Ts
,

where Ts is the Sutherland’s Law constant, and µref and Tref are the reference viscosity and tem-
perature, respectively. For air2, the power-law exponent is n = 0.666, Sutherland’s law constant
(Ts) is 110.6 K, the reference temperature (Tref) is 273.15 K, and the reference viscosity (µref)
is 1.716×10−5 kg/(m-s). The data-name identifiers for molecular viscosity models are defined in
Table 6.

2White, F. M., Viscous Fluid Flow, McGraw-Hill, 1974, p. 28-29

117



AIAA R-101A-2005

Table 6: Data-Name Identifiers for Molecular Viscosity Models

ViscosityModelType Data-Name Identifer Description Units

PowerLaw PowerLawExponent Power-law exponent (n) -
SutherlandLaw SutherlandLawConstant Sutherland’s Law

constant (Ts)
Θ

All TemperatureReference Reference temperature
(Tref)

Θ

All ViscosityMolecularReference Reference viscosity (µref) M/(LT)

If it is desired to specify any of these identifiers in a CGNS database, they should be defined as
DataArrays under ViscosityModel_t.

DataClass defines the default for the class of data contained in the molecular viscosity model. For
any data that is dimensional, DimensionalUnits may be used to describe the system of dimensional
units employed. If present, these two entities take precedence of all corresponding entities at higher
levels of the hierarchy. These precedence rules are further discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

10.5 Thermal Conductivity Model Structure Definition: ThermalConductivityModel_t

ThermalConductivityModel_t describes the model for relating the thermal-conductivity coefficient
(k) to temperature.

ThermalConductivityModelType_t := Enumeration(
Null,
ConstantPrandtl,
PowerLaw,
SutherlandLaw,
UserDefined ) ;

ThermalConductivityModel_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

ThermalConductivityModelType_t ThermalConductivityModelType ; (r)

List( DataArray_t<DataType, 1, 1> DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

118



AIAA R-101A-2005

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and DataArray_t UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within a
given instance of ThermalConductivityModel_t and shall not include the names DataClass
or DimensionalUnits.

2. ThermalConductivityModelType is the only required element.

The thermal-conductivity models parallel the molecular viscosity models. ConstantPrandtl states
that the Prandtl number (Pr = µcp/k) is constant and equal to some reference value. PowerLaw
relates k to temperature via a power-law relation,

k = kref

(
T

Tref

)n

.

SutherlandLaw states the Sutherland’s Law for thermal conductivity,

k = kref

(
T

Tref

)3/2 Tref + Ts

T + Ts
,

where kref is the reference thermal conductivity, Tref is the reference temperature, and Ts is the
Sutherland’s law constant. For air3, the Prandtl number is Pr = 0.72, the power-law exponent is
n = 0.81, Sutherland’s law constant (Ts) is 194.4 K, the reference temperature (Tref) is 273.15 K,
and the reference thermal conductivity (kref) is 2.414×10−2 kg-m/(s3-K). Data-name identifiers for
thermal conductivity models are listed in Table 7.

If it is desired to specify any of these identifiers in a CGNS database, they should be defined as
DataArrays under ThermalConductivityModel_t.

DataClass defines the default for the class of data contained in the thermal conductivity model. For
any data that is dimensional, DimensionalUnits may be used to describe the system of dimensional
units employed. If present, these two entities take precedence of all corresponding entities at higher
levels of the hierarchy. These precedence rules are further discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

10.6 Turbulence Structure Definitions

This section presents structure definitions for describing the form of closure used in the Reynolds-
averaged (or Favre-averaged) Navier-Stokes equations for determining the Reynolds stress terms.

3White, F. M., Viscous Fluid Flow, McGraw-Hill, 1974, p. 32-33

119



AIAA R-101A-2005

Table 7: Data-Name Identifiers for Thermal Conductivity Models

ThermalConduc-
tivityModelType

Data-Name Identifer Description Units

ConstantPrandtl Prandtl Prandtl number (Pr) -
PowerLaw PowerLawExponent Power-law exponent (n) -
SutherlandLaw SutherlandLawConstant Sutherland’s Law

constant (Ts)
Θ

All TemperatureReference Reference temperature
(Tref)

Θ

All ThermalConductivityReference Reference thermal
conductivity (kref)

ML/(T3Θ)

Here ‘turbulence closure’ refers to eddy viscosity or other approximations for the Reynolds stress
terms, and ‘turbulence model’ refers to the actual algebraic or turbulence-transport equation models
used. To an extent these are independent choices (e.g. using either an eddy viscosity closure or an
algebraic Reynolds-stress closure with a two-equation model).

10.6.1 Turbulence Closure Structure Definition: TurbulenceClosure_t

TurbulenceClosure_t describes the turbulence closure for the Reynolds stress terms of the Navier-
Stokes equations.

TurbulenceClosureType_t := Enumeration(
Null,
EddyViscosity,
ReynoldsStress,
ReynoldsStressAlgebraic,
UserDefined ) ;

TurbulenceClosure_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

TurbulenceClosureType_t TurbulenceClosureType ; (r)

List( DataArray_t<DataType, 1, 1> DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

120



AIAA R-101A-2005

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of TurbulenceClosure_t and shall not include the names DataClass or
DimensionalUnits.

2. TurbulenceClosureType is the only required element.

The different types of turbulent closure are as follows: EddyViscosity is the Boussinesq eddy-
viscosity closure, where the Reynolds stresses are approximated as the product of an eddy viscosity
(νt) and the mean strain tensor. Using indicial notation, the relation is,

−u′iu′j = νt

(
∂ui

∂xj
+
∂uj

∂xi

)
,

where −u′iu′j are the Reynolds stresses; the notation is further discussed in Annex A.2. Reynolds-
Stress is no approximation of the Reynolds stresses. ReynoldsStressAlgebraic is an algebraic
approximation for the Reynolds stresses based on some intermediate transport quantities.

Associated with the turbulent closure is a list of constants, where each constant is described by
a separate DataArray_t entity. Constants associated with the eddy-viscosity closure are listed in
Table 8.

Table 8: Data-Name Identifiers for Turbulence Closure

Data-Name Identifier Description Units

PrandtlTurbulent Turbulent Prandtl number (ρνtcp/kt) -

If it is desired to specify any of these identifiers in a CGNS database, they should be defined as
DataArrays under TurbulenceClosure_t.

DataClass defines the default for the class of data contained in the turbulence closure. For any
data that is dimensional, DimensionalUnits may be used to describe the system of dimensional
units employed. If present, these two entities take precedence of all corresponding entities at higher
levels of the hierarchy. These precedence rules are further discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

10.6.2 Turbulence Model Structure Definition: TurbulenceModel_t

TurbulenceModel_t describes the equation set used to model the turbulence quantities.

121



AIAA R-101A-2005

TurbulenceModelType_t := Enumeration(
Null,
Algebraic_BaldwinLomax,
Algebraic_CebeciSmith,
HalfEquation_JohnsonKing,
OneEquation_BaldwinBarth,
OneEquation_SpalartAllmaras,
TwoEquation_JonesLaunder,
TwoEquation_MenterSST,
TwoEquation_Wilcox,
UserDefined ) ;

TurbulenceModel_t< int CellDimension > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

TurbulenceModelType_t TurbulenceModelType ; (r)

List( DataArray_t<DataType, 1, 1> DataArray1 ... DataArrayN ) ; (o)

int[CellDimension*(CellDimension + 1)/2] DiffusionModel ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and DataArray_t UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of TurbulenceModel_t and shall not include the names DiffusionModel,
DataClass, or DimensionalUnits.

2. TurbulenceModelType is the only required element.
3. The length of the DiffusionModel array is as follows: in 1-D it is int[1]; in 2-D it is

int[3]; and in 3-D it is int[6]. For unstructured zones, DiffusionModel is not supported,
and should not be used.

TurbulenceModel_t requires a single structure parameter, CellDimension. It is used to define
the length of the array DiffusionModel. DiffusionModel describes the viscous diffusion terms
included in the turbulent transport model equations; the encoding of DiffusionModel is described
in Section 10.2.

Associated with each choice of turbulence model may be a list of constants, where each constant
is described by a separate DataArray_t entity. If used, the Data-Name Identifier of each constant

122



AIAA R-101A-2005

should include the turbulence model name, as well as the constant name (e.g., TurbulentSACb1,
TurbulentSSTCmu, TurbulentKESigmak, etc.). However, no attempt is made here to formalize the
names for all possible turbulence models.

DataClass defines the default for the class of data contained in the turbulence model equation
set. For any data that is dimensional, DimensionalUnits may be used to describe the system
of dimensional units employed. If present, these two entities take precedence of all corresponding
entities at higher levels of the hierarchy. These precedence rules are further discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

Example 10-A: Spalart-Allmaras Turbulence Model

Description for the eddy-viscosity closure and Spalart-Allmaras turbulence model, including asso-
ciated constants.

TurbulenceClosure_t TurbulenceClosure =
{{
TurbulenceClosureType_t TurbulenceClosureType = EddyViscosity ;

DataArray_t<real, 1, 1> PrandtlTurbulent = {{ 0.90 }} ;
}} ;

TurbulenceModel_t TurbulenceModel =
{{
TurbulenceModelType_t TurbulenceModelType = OneEquation_SpalartAllmaras ;

DataArray_t<real, 1, 1> TurbulentSACb1 = {{ 0.1355 }} ;
DataArray_t<real, 1, 1> TurbulentSACb2 = {{ 0.622 }} ;
DataArray_t<real, 1, 1> TurbulentSASigma = {{ 2/3 }} ;
DataArray_t<real, 1, 1> TurbulentSAKappa = {{ 0.41 }} ;
DataArray_t<real, 1, 1> TurbulentSACw1 = {{ 3.2391 }} ;
DataArray_t<real, 1, 1> TurbulentSACw2 = {{ 0.3 }} ;
DataArray_t<real, 1, 1> TurbulentSACw3 = {{ 2 }} ;
DataArray_t<real, 1, 1> TurbulentSACv1 = {{ 7.1 }} ;
DataArray_t<real, 1, 1> TurbulentSACt1 = {{ 1 }} ;
DataArray_t<real, 1, 1> TurbulentSACt2 = {{ 2 }} ;
DataArray_t<real, 1, 1> TurbulentSACt3 = {{ 1.2 }} ;
DataArray_t<real, 1, 1> TurbulentSACt4 = {{ 0.5 }} ;
}} ;

Note that each DataArray_t entity is abbreviated.

123



AIAA R-101A-2005

10.7 Thermal Relaxation Model Structure Definition: ThermalRelaxationModel-

Type_t

ThermalRelaxationModel_t describes the equation set used to model thermal relaxation quantities.

ThermalRelaxationModelType_t := Enumeration(
Null,
Frozen,
ThermalEquilib,
ThermalNonequilib,
UserDefined ) ;

ThermalRelaxationModel_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

ThermalRelaxationModelType_t ThermalRelaxationModelType ; (r)

List( DataArray_t<DataType, 1, 1> DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of ThermalRelaxationModel_t and shall not include the names DataClass
or DimensionalUnits.

2. ThermalRelaxationModelType is the only required element.

ThermalRelaxationModelType_t is an enumeration type describing the type of thermal relaxation
model.

DataArray_t data structures may be used to store data associated with the thermal relaxation
model. DataClass defines the default for the class of data being used. For any data that is
dimensional, DimensionalUnits may be used to describe the system of dimensional units employed.
If present, these two entities take precedence of all corresponding entities at higher levels of the
hierarchy. These precedence rules are further discussed in Section 6.4.

Additional information, if needed, may be stored using Descriptor_t data structures.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

124



AIAA R-101A-2005

10.8 Chemical Kinetics Structure Definition: ChemicalKineticsModel_t

ChemicalKineticsModel_t describes the equation set used to model chemical kinetics quantities.

ChemicalKineticsModelType_t := Enumeration(
Null,
Frozen,
ChemicalEquilibCurveFit,
ChemicalEquilibMinimization,
ChemicalNonequilib,
UserDefined ) ;

ChemicalKineticsModel_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

ChemicalKineticsModelType_t ChemicalKineticsModelType ; (r)

List( DataArray_t<DataType, 1, 1> DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within a
given instance of ChemicalKineticsModel_t and shall not include the names DataClass or
DimensionalUnits.

2. ChemicalKineticsModelType is the only required element.

ChemicalKineticsModelType_t is an enumeration type describing the type of chemical kinetics
model.

DataArray_t data structures may be used to store data associated with the chemical kinetics model.
Recommended data-name identifiers are listed in the following table.

The dimensional units are defined as follows: L is length, T is time and Θ is temperature. These
are further described in Annex A.

The variable string Symbol in the above data-name identifiers represents the chemical symbol
for the desired species. For example, H represents hydrogen atoms, O represents oxygen atoms,
H2 represents hydrogen molecules, H2O represents water molecules, and C3H5O3(NO2)3 represents

125



AIAA R-101A-2005

Table 9: Data-Name Identifiers for Chemical Kinetics Models

Data-Name Identifier Description Units

MolecularWeightSymbol Molecular weight for species Symbol -
HeatOfFormationSymbol Heat of formation per unit mass for species Symbol L2/T2

FuelAirRatio Fuel/air mass ratio -
ReferenceTemperatureHOF Reference temperature for the heat of formation Θ

nitroglycerin molecules. Any symbols off the periodic table of the elements can be used. For charged
molecules or particles, the word“plus”or “minus” should be spelled out in lower case. For example,
a CNO+ molecule should be denoted as CNOplus.

Other commonly used mixtures, that are usually not referred to by their chemical symbols, are
defined in the following table. Individual users may define new names, but these may not be
recognized by other CGNS applications. For consistency, additional names should be proposed as
SIDS extensions.

Table 10: Defined Names (Symbols) for Commonly Used Mixtures

Symbol Mixture

Air Generic air model
eminus Electrons
Fuel Generic fuel model
FuelAir Generic fuel/air mixture
JP5 JP5 jet fuel
JP7 JP7 jet fuel
JP10 JP10 jet fuel
Product Generic fuel/air product of combustion
RP1 RP1 rocket fuel

DataClass defines the default for the class of data being used. For any data that is dimensional,
DimensionalUnits may be used to describe the system of dimensional units employed. If present,
these two entities take precedence of all corresponding entities at higher levels of the hierarchy,
following the standard precedence rules.

Additional information, if needed, may be stored using Descriptor_t data structures. For example,
if CHEMKIN is used, it is recommended that a Descriptor_t data structure be used to indicate
this. Reaction equations could also be specified using Descriptor_t data structures.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

126



AIAA R-101A-2005

10.9 Electromagnetics Structure Definitions

This section presents structure definitions for describing the electric field, magnetic field, and con-
ductivity models used for electromagnetic flows.

10.9.1 Electromagnetics Electric Field Model Structure Definition: EMElectricFieldModel_t

EMElectricFieldModel_t describes the electric field model used for electromagnetic flows.

EMElectricFieldModelType_t := Enumeration(
Null,
Constant,
Frozen,
Interpolated,
Voltage,
UserDefined ) ;

EMElectricFieldModel_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

EMElectricFieldModelType_t EMElectricFieldModelType ; (r)

List( DataArray_t<DataType, 1, 1> DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of EMElectricFieldModel_t and shall not include the names DataClass or
DimensionalUnits.

2. EMElectricFieldModelType is the only required element.

EMElectricFieldModelType_t is an enumeration type describing the type of electric field model.

DataArray_t data structures may be used to store data associated with the electric field model.
Recommended data-name identifiers are listed in Table 11.

127



AIAA R-101A-2005

DataClass defines the default for the class of data contained in the electric field model. For any
data that is dimensional, DimensionalUnits may be used to describe the system of dimensional
units employed. If present, these two entities take precedence of all corresponding entities at higher
levels of the hierarchy, following the standard precedence rules.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

10.9.2 Electromagnetics Magnetic Field Model Structure Definition: EMMagneticFieldModel_t

EMMagneticFieldModel_t describes the magnetic field model used for electromagnetic flows.

EMMagneticFieldModelType_t := Enumeration(
Null,
Constant,
Frozen,
Interpolated,
UserDefined ) ;

EMMagneticFieldModel_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

EMMagneticFieldModelType_t EMMagneticFieldModelType ; (r)

List( DataArray_t<DataType, 1, 1> DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of EMMagneticFieldModel_t and shall not include the names DataClass or
DimensionalUnits.

2. EMMagneticFieldModelType is the only required element.

EMMagneticFieldModelType_t is an enumeration type describing the type of magnetic field model.

128



AIAA R-101A-2005

DataArray_t data structures may be used to store data associated with the magnetic field model.
Recommended data-name identifiers are listed in Table 11.

DataClass defines the default for the class of data contained in the electric field model. For any
data that is dimensional, DimensionalUnits may be used to describe the system of dimensional
units employed. If present, these two entities take precedence of all corresponding entities at higher
levels of the hierarchy, following the standard precedence rules.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

10.9.3 Electromagnetics Conductivity Model Structure Definition: EMConductivityModel_t

EMConductivityModel_t describes the conductivity model used for electromagnetic flows.

EMConductivityModelType_t := Enumeration(
Null,
Constant,
Frozen,
Equilibrium_LinRessler,
Chemistry_LinRessler,
UserDefined ) ;

EMConductivityModel_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

EMConductivityModelType_t EMConductivityModelType ; (r)

List( DataArray_t<DataType, 1, 1> DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of EMConductivityModel_t and shall not include the names DataClass or
DimensionalUnits.

2. EMConductivityModelType is the only required element.

129



AIAA R-101A-2005

EMConductivityModelType_t is an enumeration type describing the type of conductivity model.

DataArray_t data structures may be used to store data associated with the conductivity model.
Recommended data-name identifiers are listed in Table 11.

Table 11: Data-Name Identifiers for Electromagnetics Models

Data-Name Identifier Description Units

Voltage Voltage ML2/TI
ElectricFieldX x-component of electric field vector ML/TI
ElectricFieldY y-component of electric field vector ML/TI
ElectricFieldZ z-component of electric field vector ML/TI
MagneticFieldX x-component of magnetic field vector I/L
MagneticFieldY y-component of magnetic field vector I/L
MagneticFieldZ z-component of magnetic field vector I/L
CurrentDensityX x-component of current density vector I/L2

CurrentDensityY y-component of current density vector I/L2

CurrentDensityZ z-component of current density vector I/L2

ElectricConductivity Electrical conductivity ML/T3I2

LorentzForceX x-component of Lorentz force vector ML/T2

LorentzForceY y-component of Lorentz force vector ML/T2

LorentzForceZ z-component of Lorentz force vector ML/T2

JouleHeating Joule heating ML2/T2

The dimensional units are defined as follows: M is mass, L is length, T is time, and I is electric
current. These are further described in Annex A.

DataClass defines the default for the class of data contained in the conductivity model. For any
data that is dimensional, DimensionalUnits may be used to describe the system of dimensional
units employed. If present, these two entities take precedence of all corresponding entities at higher
levels of the hierarchy, following the standard precedence rules.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

10.10 Flow Equation Examples

This section presents two examples of flow-equation sets. The first is an inviscid case and the second
is a turbulent case with a one-equation turbulence model.

Example 10-B: 3-D Compressible Euler

3-D compressible Euler with a perfect gas assumption for a monatomic gas:

FlowEquationSet_t<3> EulerEquations =

130



AIAA R-101A-2005

{{
int EquationDimension = 3 ;

GoverningEquations_t<3> GoverningEquations =
{{
GoverningEquationsType_t GoverningEquationsType = Euler ;
}} ;

GasModel_t GasModel =
{{
GasModelType_t GasModelType = CaloricallyPerfect ;

DataArray_t<real, 1, 1> SpecificHeatRatio =
{{
Data(real, 1, 1) = 1.667 ;

DataClass_t DataClass = NondimensionalParameter ;
}} ;

}} ;
}} ;

Example 10-C: 3-D Compressible Navier-Stokes

3-D compressible Navier-Stokes for a structured grid, with the S-A turbulence model, a perfect gas
assumption, Sutherland’s law for the molecular viscosity, a constant Prandtl-number assumption,
and inclusion of the full Navier-Stokes diffusion terms; all models assume air:

FlowEquationSet_t<3> NSEquations =
{{
int EquationDimension = 3 ;

GoverningEquations_t<3> GoverningEquations =
{{
GoverningEquationsType_t GoverningEquationsType = NSTurbulent ;

int[6] DiffusionModel = [1,1,1,1,1,1] ;
}} ;

GasModel_t GasModel =
{{
GasModelType_t GasModelType = CaloricallyPerfect ;

DataArray_t<real, 1, 1> SpecificHeatRatio = {{ 1.4 }} ;
}} ;

131



AIAA R-101A-2005

ViscosityModel_t ViscosityModel =
{{
ViscosityModelType_t ViscosityModelType = SutherlandLaw ;

DataArray_t<real, 1, 1> SutherlandLawConstant =
{{
Data(real, 1, 1) = 110.6 }} ;

DataClass_t DataClass = Dimensional ;
DimensionalUnits_t DimensionalUnits = {{ TemperatureUnits = Kelvin }} ;
}} ;

}} ;

ThermalConductivityModel_t ThermalConductivityModel =
{{
ThermalConductivityModelType_t ThermalConductivityModelType =

ConstantPrandtl ;

DataArray_t<real, 1, 1> Prandtl = {{ 0.72 }} ;
}} ;

TurbulenceClosure_t<3> TurbulenceClosure =
{{
TurbulenceClosureType_t TurbulenceClosureType = EddyViscosity ;

DataArray_t<real, 1, 1> PrandtlTurbulent = {{ 0.90 }} ;
}} ;

TurbulenceModel_t<3> TurbulenceModel =
{{
TurbulenceModelType_t TurbulenceModelType = OneEquation_SpalartAllmaras ;

int[6] DiffusionModel = [1,1,1,1,1,1] ;
}} ;

}} ;

Note that all DataArray_t entities are abbreviated except SutherlandLawConstant.

132



AIAA R-101A-2005

11 Time-Dependent Flow

This section describes structure types intended primarily for time-dependent flows. Data structures
are presented for storing time-dependent or iterative data, and for recording rigid and arbitary grid
motion. The section concludes with several examples.

11.1 Iterative Data Structure Definitions

In order to keep a record of time dependent or iterative data, the data structures BaseIterative-
Data_t and ZoneIterativeData_t are used.

11.1.1 Base Iterative Data Structure Definition: BaseIterativeData_t

The BaseIterativeData_t data structure is located directly under the CGNSBase_t node. It con-
tains information about the number of time steps or iterations being recorded, and the time and/or
iteration values at each step. In addition, it may include the list of zones and families for each step
of the simulation, if these vary throughout the simulation.

The BaseIterativeData_t data structure is defined as follows:

BaseIterativeData_t :=
{
int NumberOfSteps (r)

DataArray_t<real, 1, NumberOfSteps> TimeValues ; (o/r)
DataArray_t<int, 1, NumberOfSteps> IterationValues ; (r/o)

DataArray_t<int, 1, NumberOfSteps> NumberOfZones ; (o)
DataArray_t<int, 1, NumberOfSteps> NumberOfFamilies ; (o)
DataArray_t<char, 3, [32, MaxNumberOfZones, NumberOfSteps]>

ZonePointers ; (o)
DataArray_t<char, 3, [32, MaxNumberOfFamilies, NumberOfSteps]>

FamilyPointers ; (o)

List( DataArray_t<> DataArray1 ... DataArrayN ) ; (o)

List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
}

133



AIAA R-101A-2005

Notes

1. Default names for the DataArray_t, Descriptor_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of BaseIterativeData_t and shall not include the names DataClass, Di-
mensionalUnits, FamilyPointers, IterationValues, NumberOfFamilies, NumberOfZones,
TimeValues, or ZonePointers.

2. NumberOfSteps is a required element of the BaseIterativeData_t data structure. It holds
either the number of time steps or the number of iterations being recorded.

3. Either TimeValues or IterationValues must be defined. If both are used, there must be a
one-to-one correspondence between them.

TimeValues and IterationValues are data-name identifiers corresponding to the time and iter-
ation values stored in the file. When IterationValues are used, the iterative data stored in the
database correspond to values at the end of the associated iteration.

The data-name identifiers NumberOfZones and ZonePointers are only used if different zone data
structures apply to different steps of the simulation. (See Example 11-C.)

Similarly, if the geometry varies with time or iteration, then the data-name identifiers NumberOf-
Families and FamilyPointers are used to record which Family_t data structure(s) correspond(s)
to which step.

The DataArray_t nodes for ZonePointers and FamilyPointers are defined as three-dimensional
arrays. For each recorded step, the names of all zones and families being used for the step may
be recorded. Note that the names are limited to 32 characters, as usual in the SIDS. The vari-
ables MaxNumberOfZones and MaxNumberOfFamilies represent the maximum number of zones and
families that apply to one step. So if NumberOfSteps = 5 and NumberOfZones = {2,2,3,4,3}, then
MaxNumberOfZones equals 4.

When NumberOfZones and NumberOfFamilies vary for different stored time steps, the name Null
is used in ZonePointers and FamilyPointers as appropriate for steps in which the NumberOfZones
or NumberOfFamilies is less than the MaxNumberOfZones or MaxNumberOfFamilies.

Any number of extra DataArray_t nodes are allowed. These should be used to record data not
covered by this specification.

11.1.2 Zone Iterative Data Structure Definition: ZoneIterativeData_t

The ZoneIterativeData_t data structure is located under the Zone_t node. It may be used to
record pointers to zonal data for each recorded step of the simulation, and is defined as follows:

ZoneIterativeData_t< int NumberOfSteps > :=
{
DataArray_t<char, 2, [32, NumberOfSteps]> RigidGridMotionPointers ; (o)
DataArray_t<char, 2, [32, NumberOfSteps]> ArbitraryGridMotionPointers ; (o)
DataArray_t<char, 2, [32, NumberOfSteps]> GridCoordinatesPointers ; (o)
DataArray_t<char, 2, [32, NumberOfSteps]> FlowSolutionsPointers ; (o)

134



AIAA R-101A-2005

List( DataArray_t<> DataArray1 ... DataArrayN ) ; (o)

List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
}

Notes

1. Default names for the DataArray_t, Descriptor_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of ZoneIterativeData_t and shall not include the names ArbitraryGrid-
MotionPointers, DataClass, DimensionalUnits, FlowSolutionsPointers, GridCoordi-
natesPointers, or RigidGridMotionPointers.

The data arrays with data-name identifiers xxx Pointers contain lists of associated data structures
for each recorded time value or iteration. These data structures contain data at the associated
time value, or at the end of the associated iteration. There is an implied one-to-one correspondence
between each pointer (from 1, 2, . . . , NumberOfSteps) and the associated TimeValues and/or
IterationValues under BaseIterativeData_t. They refer by name to data structures within
the current zone. The name Null is used when a particular time or iteration does not have a
corresponding data structure to point to.

Any number of extra DataArray_t nodes are allowed. These should be used to record data not
covered by this specification.

The ZoneIterativeData_t data structure may not exist without the BaseIterativeData_t under
the CGNSBase_t node. However BaseIterativeData_t may exist without ZoneIterativeData_t.

11.2 Rigid Grid Motion Structure Definition: RigidGridMotion_t

Adding rigid grid motion information to the CGNS file enables an application code to determine
the mesh location without the need to alter the original mesh definition recorded under GridCo-
ordinates_t. A data structure named RigidGridMotion_t is used to record the necessary data
defining a rigid translation and/or rotation of the grid coordinates.

The rigid grid motion is recorded independently for each zone of the CGNS base. Therefore the
RigidGridMotion_t data structure is located under the zone data structure (Zone_t). There may
be zero to several RigidGridMotion_t nodes under a Zone_t node. The multiple rigid grid motion
definitions may be associated with different iterations or time steps in the computation. This
association is recorded under the ZoneIterativeData_t data structure, described in Section 11.1.2.

135



AIAA R-101A-2005

RigidGridMotion_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

RigidGridMotionType_t RigidGridMotionType ; (r)

DataArray_t<real, 2, [PhysicalDimension, 2]> OriginLocation ; (r)
DataArray_t<real, 1, PhysicalDimension> RigidRotationAngle ; (o/d)
DataArray_t<real, 1, PhysicalDimension> RigidVelocity ; (o)
DataArray_t<real, 1, PhysicalDimension> RigidRotationRate ; (o)

List( DataArray_t DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of RigidGridMotion_t and shall not include the names DataClass, Dimen-
sionalUnits, OriginLocation, RigidGridMotionType, RigidRotationAngle, RigidRota-
tionRate, or RigidVelocity.

2. RigidGridMotionType and OriginLocation are the only required elements under Rigid-
GridMotion_t. All other elements are optional.

RigidGridMotionType_t is an enumeration type that describes the type of rigid grid motion.

RigidGridMotionType_t := Enumeration(
Null,
ConstantRate,
VariableRate,
UserDefined ) ;

The characteristics of the grid motion are defined by the data-name identifiers in Table 12.

Any number of additional DataArray_t nodes are allowed. These may be used to record data not
covered by this specification.

“Rigid grid motion” implies relative motion of grid zones. However, no attempt is made in the
RigidGridMotion_t data structure to require that the ZoneGridConnectivity_t information be
updated to be consistent with the new grid locations. Whether the ZoneGridConnectivity_t
information refers to the original connectivity (of GridCoordinates) or the latest connectivity (of
the moved or deformed grid) is currently left up to the user.

136



AIAA R-101A-2005

Table 12: Data-Name Identifiers for Rigid Grid Motion

Data-Name Identifier Description Units

OriginLocation Physical coordinates of the origin before and after the rigid
grid motion

L

RigidRotationAngle Rotation angles about each axis of the translated
coordinate system. If not specified, RigidRotationAngle is
set to zero.

α

RigidVelocity Grid velocity vector of the origin translation L/T
RigidRotationRate Rotation rate vector about the axis of the translated

coordinate system
α/T

11.3 Arbitrary Grid Motion Structure Definition: ArbitraryGridMotion_t

When a grid is in motion, it is often necessary to account for the position of each grid point as
the grid deforms. When all grid points move at the same velocity, the grid keeps its original
shape. This particular case of grid motion may be recorded under the RigidGridMotion_t data
structure described in Section 11.2. On the other hand, if the grid points have different velocity,
the grid is deforming. The ArbitraryGridMotion_t data structure allows the CGNS file to contain
information about arbitrary grid deformations. If not present, the grid is assumed to be rigid.

Note that multiple GridCoordinates_t nodes may be stored under a Zone_t. This allows the
storage of the instantaneous grid locations at different time steps or iterations.

The arbitrary grid motion is recorded independently for each zone of the CGNS base. Therefore
the ArbitraryGridMotion_t data structure is located under the zone data structure (Zone_t).
There may be zero to several ArbitraryGridMotion_t nodes under a single Zone_t node. The
multiple arbitrary grid motion definitions may be associated with different iterations or time steps
in the computation. This association is recorded under the ZoneIterativeData_t data structure,
described in Section 11.1.2.

ArbitraryGridMotion_t< int IndexDimension, int VertexSize[IndexDimension],
int CellSize[IndexDimension] > :=

{
ArbitraryGridMotionType_t ArbitraryGridMotionType ; (r)

List(DataArray_t<real, IndexDimension, DataSize[]>
GridVelocityX GridVelocityY ... ) ; (o)

List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

GridLocation_t GridLocation ; (o/d)

Rind_t<IndexDimension> Rind ; (o/d)

137



AIAA R-101A-2005

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
}

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within a
given instance of ArbitraryGridMotion_t and shall not include the names ArbitraryGrid-
MotionType, DataClass, DimensionalUnits, GridLocation, or Rind.

2. The only required element of the ArbitraryGridMotion_t data structure is the Arbitrary-
GridMotionType. Thus, even if a deforming grid application does not require the storage
of grid velocity data, the ArbitraryGridMotion_t node must exist (with ArbitraryGrid-
MotionType = DeformingGrid) to indicate that deformed grid points (GridCoordinates_t)
exist for this zone.

3. Rind is an optional field that indicates the number of rind planes included in the grid velocity
data. It only applies to structured zones.

4. The GridLocation specifies the location of the velocity data with respect to the grid; if
absent, the data is assumed to coincide with grid vertices (i.e. GridLocation = Vertex).

ArbitraryGridMotion_t requires three structure parameters; IndexDimension identifies the di-
mensionality of the grid-size arrays, and VertexSize and CellSize are the number of ‘core’ vertices
and cells, respectively, in each index direction. For unstructured zones, IndexDimension is always
1.

ArbitraryGridMotionType_t is an enumeration type that describes the type of arbitrary grid
motion.

ArbitraryGridMotionType_t := Enumeration(
Null,
NonDeformingGrid,
DeformingGrid,
UserDefined ) ;

The DataArray_t nodes are used to store the components of the grid velocity vector. Table 13
lists the data-name identifiers used to record these vectors in cartesian, cylindrical, and spherical
coordinate systems.

The field GridLocation specifies the location of the grid velocities with respect to the grid; if absent,
the grid velocities are assumed to coincide with grid vertices (i.e., GridLocation = Vertex). All
grid velocities within a given instance of ArbitraryGridMotion_t must reside at the same grid
location.

138



AIAA R-101A-2005

Table 13: Data-Name Identifiers for Grid Velocity

Data-Name Identifier Description Units

GridVelocityX x-component of grid velocity L/T
GridVelocityY y-component of grid velocity L/T
GridVelocityZ z-component of grid velocity L/T

GridVelocityR r-component of grid velocity L/T
GridVelocityTheta θ-component of grid velocity α/T
GridVelocityPhi φ-component of grid velocity α/T

GridVelocityXi ξ-component of grid velocity L/T
GridVelocityEta η-component of grid velocity L/T
GridVelocityZeta ζ-component of grid velocity L/T

Rind is an optional field for structured zones that indicates the number of rind planes included in
the data. Its purpose and function are identical to those described in Section 7.1. Note, however,
that the Rind in this structure is independent of the Rind contained in GridCoordinates_t. They
are not required to contain the same number of rind planes. Also, the location of any rind points
is assumed to be consistent with the location of the ‘core’ data points (e.g. if GridLocation =
CellCenter, rind points are assumed to be located at fictitious cell centers).

DataClass defines the default class for data contained in the DataArray_t entities. For dimensional
grid velocities, DimensionalUnits may be used to describe the system of units employed. If present
these two entities take precedence over the corresponding entities at higher levels of the CGNS
hierarchy. The rules for determining precedence of entities of this type are discussed in Section 6.4.

Point-by-point grid velocity implies a deformation (or potentially only motion) of the grid points
relative to each other. Because the original grid coordinates definition remains unchanged with the
name GridCoordinates, any deformed coordinates must be written with a different name (e.g.,
MovedGrid#1 or another used-defined name) and are pointed to using GridCoordinatesPointers
in the data structure ZoneIterativeData_t, as described in Section 11.1.2.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

Point-by-point grid velocity may also lead to relative motion of grid zones, or movement of grid
along abutting interfaces. However, no attempt is made here to require that the ZoneGridCon-
nectivity_t information be updated to be consistent with the new grid locations. Whether the
ZoneGridConnectivity_t information refers to the original connectivity (of GridCoordinates) or
the latest connectivity (of the moved or deformed grid) is currently left up to the user.

139



AIAA R-101A-2005

FUNCTION DataSize[]:

return value: one-dimensional int array of length IndexDimension
dependencies: IndexDimension, VertexSize[], CellSize[], GridLocation, Rind

The function DataSize[] is the size of the DataArrays containing the grid velocity components.
It is identical to the function DataSize[] defined for FlowSolution_t (see Section 7.7).

11.4 Examples for Time-Dependent Flow

Example 11-A: Rigid Grid Motion

In this example, the whole mesh moves rigidly, so the only time-dependant data are the grid
coordinates and flow solutions. However, since the mesh moves rigidly, the grid coordinates need
not be recorded at each time step. Instead, a RigidGridMotion_t data structure is recorded for
each step of the computation.

The number of steps and time values for each step are recorded under BaseIterativeData_t.

CGNSBase_t {
BaseIterativeData_t {
NumberOfSteps = N ;
TimeValues = time1, time2, ..., timeN ;

} ;
} ;

The multiple rigid grid motion and flow solution data structures are recorded under the zone.
RigidGridMotionPointers and FlowSolutionPointers keep the lists of which RigidGridMo-
tion_t and FlowSolution_t nodes correspond to each time step.

Zone_t Zone {

--- Time independent data
GridCoordinates_t GridCoordinates
ZoneBC_t ZoneBC
ZoneGridConnectivity_t ZoneGridConnectivity

--- Time dependant data
RigidGridMotion_t RigidGridMotion#1
RigidGridMotion_t RigidGridMotion#2
...
RigidGridMotion_t RigidGridmotion#N

FlowSolution_t Solution#0
FlowSolution_t Solution#1
FlowSolution_t Solution#2

140



AIAA R-101A-2005

...
FlowSolution_t Solution#N

ZoneIterativeData_t {
RigidGridMotionPointers = {"RigidGridMotion#1", "RigidGridMotion#2", ...,

"RigidGridMotion#N"}
FlowSolutionPointers = {"Solution#1", "Solution#2, ..., "Solution#N"}

}
}

Note that there may be more solutions under a zone than those pointed to by FlowSolutionPoint-
ers. In this example, Solution#0 could correspond to a restart solution.

Example 11-B: Deforming Grid Motion

In this example, velocity vectors are node dependant allowing for mesh deformation. In such a
case, it is difficult or even impossible to recompute the mesh at each time step. Therefore the grid
coordinates are recorded for each step.

Multiple GridCoordinates_t and FlowSolution_t data structures are recorded under the zone.
In addition, the data structure ArbitraryGridMotion_t is recorded for each step. GridCoordi-
natesPointers, FlowSolutionPointers, and ArbitraryGridMotionPointers_t keep the list of
which grid coordinates definition, flow solution, and arbitrary grid motion definition correspond to
each time step.

Zone_t Zone {

--- Time independent data
ZoneBC_t ZoneBC
ZoneGridConnectivity_t ZoneGridConnectivity

--- Time dependent data
List ( GridCoordinates_t GridCoordinates MovedGrid#1 MovedGrid#2 ...

MovedGrid#N )
List ( FlowSolution_t Solution#0 Solution#1 Solution#2 ... Solution#N )
List ( ArbitraryGridMotion_t ArbitraryGridMotion#1

ArbitraryGridMotion#2 ... ArbitraryGridMotion#N )
ZoneIterativeData_t {
GridCoordinatesPointers = {"MovedGrid#1", "MovedGrid#2", ...,

"MovedGrid#N"}
FlowSolutionPointers = {"Solution#1", "Solution#2, ..., "Solution#N"}
ArbitraryGridMotionPointers = {"ArbitraryGridMotion#1",

"ArbitraryGridMotion#2", ..., "ArbitraryGridMotion#N"}
}

}

141



AIAA R-101A-2005

Example 11-C: Adapted Unstructured Mesh

In this example, the mesh size varies at each remeshing, therefore new zones must be created.
ZonePointers is used to keep a record of the zone definition corresponding to each recorded step.
Let’s assume that the solution is recorded every 50 iterations, and the grid is adapted every 100
iterations.

The number of steps, iteration values for each step, number of zones for each step, and name of
these zones are recorded under BaseIterativeData_t.

CGNSBase_t {
BaseIterativeData_t {
NumberOfSteps = 4
IterationValues = {50, 100, 150, 200}
NumberOfZones = {1, 1, 1, 1}
ZonePointers = {"Zone1", "Zone1", "Zone2", "Zone2"}

}
}

Each zone holds 2 solutions recorded at 50 iterations apart. Therefore the ZoneIterativeData_t
data structure must be included to keep track of the FlowSolutionPointers.

Zone_t Zone1 {

--- Constant data
GridCoordinates_t GridCoordinates
Elements_t Elements
ZoneBC_t ZoneBC

--- Variable data
List ( FlowSolution_t InitialSolution Solution50 Solution100 )
ZoneIterativeData_t {
FlowSolutionPointers = {"Solution50", "Solution100", "Null", "Null"}

}
}

Zone_t Zone2 {

--- Constant data
GridCoordinates_t GridCoordinates
Elements_t Elements
ZoneBC_t ZoneBC

--- Variable data
List ( FlowSolution_t RestartSolution Solution150 Solution200 )
ZoneIterativeData_t {

142



AIAA R-101A-2005

FlowSolutionPointers = {"Null", "Null", "Solution150", "Solution200"}
}

}

Notes

1. If the solution was recorded every 100 iterations instead of every 50 iterations, then each zone
would have only one FlowSolution_t node and the data structure ZoneIterativeData_t
would not be required.

2. Note that FlowSolutionPointers is always an array of size NumberOfSteps even if some of
the steps are defined in another zone.

Example 11-D: Combination of Grid Motion and Time-Accuracy

The following is an example demonstrating the use of the rigid grid motion, arbitrary grid motion,
and time-accurate data nodes in CGNS. The example is a 3-zone case. Zone 1 is rigidly rotating
about the x-axis at a constant rate, with no translation. Zone 2 is a deforming zone. Zone 3 is
a fixed zone. This is a time-accurate simulation with two solutions saved at times 15.5 and 31.0,
corresponding to iteration numbers 1000 and 2000.

No units are given in this example, but a real case would establish them. Also, a real case would
include connectivity, boundary conditions, and possibly other information as well. Each indentation
represents a level down (a child) from the parent node.

Base (CGNSBase_t)
SimulationType (SimulationType_t) Data=TimeAccurate
BaseIterativeData (BaseIterativeData_t) Data=NumberOfSteps=2
TimeValues (DataArray_t) Data=(15.5, 31.0)
IterationValues (DataArray_t) Data=(1000, 2000)

Zone#1 (Zone_t)
GridCoordinates (GridCoordinates_t)
CoordinateX (DataArray_t)
CoordinateY (DataArray_t)

RigidGridMotion#1(RigidGridMotion_t) Data=RigidGridMotionType=ConstantRate
OriginLocation (DataArray_t) Data=(0,0,0), (0,0,0)
RigidRotationAngle (DataArray_t) Data=(5., 0., 0.)

RigidGridMotion#2(RigidGridMotion_t) Data=RigidGridMotionType=ConstantRate
OriginLocation (DataArray_t) Data=(0,0,0), (0,0,0)
RigidRotationAngle (DataArray_t) Data=(10., 0., 0.)

ZoneIterativeData (ZoneIterativeData_t)
RigidGridMotionPointers (DataArray_t) Data=(RigidGridMotion#1,

RigidGridMotion#2)
FlowSolutionPointers (DataArray_t) Data=(Soln#1, Soln#2)

Soln#1 (FlowSolution_t)
Density (DataArray_t)
VelocityX (DataArray_t)

143



AIAA R-101A-2005

Soln#2 (FlowSolution_t)
Density (DataArray_t)
VelocityX (DataArray_t)

Zone#2 (Zone_t)
GridCoordinates (GridCoordinates_t)
CoordinateX (DataArray_t)
CoordinateY (DataArray_t)

MovedGrid#1 (GridCoordinates_t)
CoordinateX (DataArray_t)
CoordinateY (DataArray_t)

MovedGrid#2 (GridCoordinates_t)
CoordinateX (DataArray_t)
CoordinateY (DataArray_t)

ArbitraryGridMotion#1 (ArbitraryGridMotion_t)
Data=ArbitraryGridMotionType=DeformingGrid

ArbitraryGridMotion#2 (ArbitraryGridMotion_t)
Data=ArbitraryGridMotionType=DeformingGrid

GridVelocityX (DataArray_t)
GridVelocityY (DataArray_t)

ZoneIterativeData (ZoneIterativeData_t)
ArbitraryGridMotionPointers (DataArray_t) Data=("ArbitraryGridMotion#1",

"ArbitraryGridMotion#2")
GridCoordinatesPointers (DataArray_t) Data=("MovedGrid#1",

"MovedGrid#2")
FlowSolutionPointers (DataArray_t) Data=("Soln#1", "Soln#2")

Soln#1 (FlowSolution_t)
Density (DataArray_t)
VelocityX (DataArray_t)

Soln#2 (FlowSolution_t)
Density (DataArray_t)
VelocityX (DataArray_t)

Zone#3 (Zone_t)
GridCoordinates (GridCoordinates_t)
CoordinateX (DataArray_t)
CoordinateY (DataArray_t)

ZoneIterativeData (ZoneIterativeData_t)
FlowSolutionPointers (DataArray_t) Data=("Soln#1", "Soln#2")

Soln#1 (FlowSolution_t)
Density (DataArray_t)
VelocityX (DataArray_t)

Soln#2 (FlowSolution_t)
Density (DataArray_t)
VelocityX (DataArray_t)

144



AIAA R-101A-2005

Notes

1. Under BaseIterativeData_t, one can give either TimeValues, or IterationValues, or both.
In the example, both have been given.

2. The nodes NumberOfZones and ZonePointers are not required under the BaseIterative-
Data_t node in this example because all existing zones are used for each time step.

3. Under ArbitraryGridMotion, the GridVelocity data is optional. In the example, it was
put under one of the nodes but not under the other. Hence, "ArbitraryGridMotion#1" in
the example has no children nodes, while "ArbitraryGridMotion#2" does.

4. The pointers under ZoneIterativeData_t point to names of nodes within the same zone.
Thus, for example, Soln#1 refers to the flow solution named Soln#1 in the same zone, even
though there are flow solution nodes in other zones with the same name.

5. The name GridCoordinates always refers to the original grid. Thus, when a grid is de-
forming, the deformed values must be put in GridCoordinates_t nodes of a different name.
In the example, the deformed grids (for Zone#2) at the two times of interest were put into
"MovedGrid#1" and "MovedGrid#2".

6. Because the node "ArbitraryGridMotion#1" doesn’t really add any information in the cur-
rent example (since it was decided not to store GridVelocity data under it), one has the
option of not including this node in the CGNS file. If it is removed, then under Zone#2’s
ZoneIterativeData, the ArbitraryGridMotionPointers data would be replaced by:

Data = (Null, ArbitraryGridMotion#2)

145



AIAA R-101A-2005

12 Miscellaneous Data Structures

This section contains miscellaneous structure types for describing reference states, convergence
history, discrete field data, integral or global data, families, and user-defined data.

12.1 Reference State Structure Definition: ReferenceState_t

ReferenceState_t describes a reference state, which is a list of geometric or flow-state quantities
defined at a common location or condition. Examples of typical reference states associated with
CFD calculations are freestream, plenum, stagnation, inlet and exit. Note that providing a Ref-
erenceState description is particularly important if items elsewhere in the CGNS database are
NormalizedByUnknownDimensional.

ReferenceState_t :=
{
Descriptor_t ReferenceStateDescription ; (o)
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

List( DataArray_t<DataType, 1, 1> DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of ReferenceState_t and shall not include the names DataClass, Dimen-
sionalUnits, or ReferenceStateDescription.

Data-name identifiers associated with ReferenceState are shown in Table 14.

In addition, any flowfield quantities (such as Density, Pressure, etc.) can be included in the
ReferenceState.

The reference length L (LengthReference) may be necessary for NormalizedByUnknownDimen-
sional databases, to define the length scale used for nondimensionalizations. It may be the same
or different from the Reynolds_Length used to define the Reynolds number.

Because of different definitions for angle of attack and angle of yaw, these quantities are not ex-
plicitly defined in the SIDS. Instead, the user can unambigouosly denote the freestream velocity

146



AIAA R-101A-2005

Table 14: Data-name Identifiers for Reference State

Data-Name Identifier Description Units

Mach Mach number, M = q/c -
Mach_Velocity Velocity scale, q L/T
Mach_VelocitySound Speed of sound scale, c L/T
Reynolds Reynolds number, Re = V LR/ν -
Reynolds_Velocity Velocity scale, V L/T
Reynolds_Length Length scale, LR L
Reynolds_ViscosityKinematic Kinematic viscosity scale, ν L2/T
LengthReference Reference length, L L

vector direction by giving VelocityX, VelocityY, and VelocityZ in ReferenceState, (with the
reference state denoting the freestream).

Care should be taken when defining the reference state quantities to ensure consistency. (See the
discussion in Section 5.2.3.) For example, if velocity, length, and time are all defined, then the
velocity stored should be length/time. If consistency is not followed, different applications could
interpret the resulting data in different ways.

DataClass defines the default for the class of data contained in the reference state. If any reference
state quantities are dimensional, DimensionalUnits may be used to describe the system of dimen-
sional units employed. If present, these two entities take precedence of all corresponding entities at
higher levels of the hierarchy. These precedence rules are further discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

We recommend using the ReferenceStateDescription entity to document the flow conditions.
The format of the documentation is currently unregulated.

12.2 Reference State Example

An example is presented in this section of a reference state entity that contains dimensional data.
An additional example of a nondimensional reference state is provided in Annex B.

Example 12-A: Reference State with Dimensional Data

A freestream reference state where all data quantities are dimensional. Standard atmospheric
conditions at sea level are assumed for static quantities, and all stagnation variables are obtained
using the isentropic relations. The flow velocity is 200 m/s aligned with the x-axis. Dimensional
units of kilograms, meters, and seconds are used. The data class and system of units are specified
at the ReferenceState_t level rather than attaching this information directly to the DataArray_t
entities for each reference quantity. Data-name identifiers are provided in Annex A.

147



AIAA R-101A-2005

ReferenceState_t ReferenceState =
{{
Descriptor_t ReferenceStateDescription =
{{
Data(char, 1, 45) = "Freestream at standard atmospheric conditions" ;
}} ;

DataClass_t DataClass = Dimensional ;

DimensionalUnits_t DimensionalUnits =
{{
MassUnits = Kilogram ;
LengthUnits = Meter ;
TimeUnits = Second ;
TemperatureUnits = Kelvin ;
AngleUnits = Radian ;
}} ;

DataArray_t<real, 1, 1> VelocityX =
{{
Data(real, 1, 1) = 200. ;
}} ;

DataArray_t<real, 1, 1> VelocityY = {{ 0. }} ;
DataArray_t<real, 1, 1> VelocityZ = {{ 0. }} ;

DataArray_t<real, 1, 1> Pressure = {{ 1.0132E+05 }} ;
DataArray_t<real, 1, 1> Density = {{ 1.226 }} ;
DataArray_t<real, 1, 1> Temperature = {{ 288.15 }} ;
DataArray_t<real, 1, 1> VelocitySound = {{ 340. }} ;
DataArray_t<real, 1, 1> ViscosityMolecular = {{ 1.780E-05 }} ;

DataArray_t<real, 1, 1> PressureStagnation = {{ 1.2806E+05 }} ;
DataArray_t<real, 1, 1> DensityStagnation = {{ 1.449 }} ;
DataArray_t<real, 1, 1> TemperatureStagnation = {{ 308.09 }} ;
DataArray_t<real, 1, 1> VelocitySoundStagnation = {{ 351.6 }} ;

DataArray_t<real, 1, 1> PressureDynamic = {{ 0.2542E+05 }} ;
}} ;

Note that all DataArray_t entities except VelocityX have been abbreviated.

12.3 Convergence History Structure Definition: ConvergenceHistory_t

Flow solver convergence history information is described by the ConvergenceHistory_t structure.
This structure contains the number of iterations and a list of data arrays containing convergence

148



AIAA R-101A-2005

information at each iteration.

ConvergenceHistory_t :=
{
Descriptor_t NormDefinitions ; (o)
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

int Iterations ; (r)

List( DataArray_t<DataType, 1, Iterations>
DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of ConvergenceHistory_t and shall not include the names DataClass,
DimensionalUnits, or NormDefinitions.

2. Iterations is the only required field for ConvergenceHistory_t.

Iterations identifies the number of iterations for which convergence information is recorded. This
value is also passed into each of the DataArray_t entities, defining the length of the data arrays.

DataClass defines the default for the class of data contained in the convergence history. If any
convergence-history data is dimensional, DimensionalUnits may be used to describe the system of
dimensional units employed. If present, these two entities take precedence over all corresponding
entities at higher levels of the hierarchy. These precedence rules are further discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

Measures used to record convergence vary greatly among current flow-solver implementations. Con-
vergence information typically includes global forces, norms of equation residuals, and norms of so-
lution changes. Attempts to systematically define a set of convergence measures within the CGNS
project have been futile. For global parameters, such as forces and moments, Annex A lists a
set of standardized data-array identifiers. For equations residuals and solution changes, no such
standard list exists. It is suggested that data-array identifiers for norms of equations residuals
begin with RSD, and those for solution changes begin with CHG. For example, RSDMassRMS could be
used for the L2-norm (RMS) of mass conservation residuals. It is also strongly recommended that

149



AIAA R-101A-2005

NormDefinitions be utilized to describe the convergence information recorded in the data arrays.
The format used to describe the convergence norms in NormDefinitions is currently unregulated.

12.4 Discrete Data Structure Definition: DiscreteData_t

DiscreteData_t provides a description of generic discrete data (i.e., data defined on a computa-
tional grid); it is identical to FlowSolution_t except for its type name. This structure can be used
to store field data, such as fluxes or equation residuals, that is not typically considered part of the
flow solution. DiscreteData_t contains a list for data arrays, identification of grid location, and a
mechanism for identifying rind-point data included in the data arrays. All data contained within
this structure must be defined at the same grid location and have the same amount of rind-point
data.

DiscreteData_t< int IndexDimension, int VertexSize[IndexDimension],
int CellSize[IndexDimension] > :=

{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

GridLocation_t GridLocation ; (o/d)

Rind_t<IndexDimension> Rind ; (o/d)

List( DataArray_t<DataType, IndexDimension, DataSize[]>
DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within a
given instance of DiscreteData_t and shall not include the names DataClass, Dimension-
alUnits, GridLocation, or Rind.

2. There are no required fields for DiscreteData_t. GridLocation has a default of Vertex if
absent. Rind also has a default if absent; the the default is equivalent to having an instance
of Rind whose RindPlanes array contains all zeros (see Section 4.8).

3. The structure parameter DataType must be consistent with the data stored in the DataAr-
ray_t entities (see Section 5.1).

4. For unstructured zones: rind planes are not meaningful and should not be used; GridLoca-
tion options are limited to Vertex or CellCenter, meaning that solution data may only be

150



AIAA R-101A-2005

expressed at these locations; and the data arrays must follow the node ordering if GridLoca-
tion = Vertex, and the element ordering if GridLocation = CellCenter.

DiscreteData_t requires three structure parameters; IndexDimension identifies the dimensionality
of the grid size arrays, and VertexSize and CellSize are the number of ‘core’ vertices and cells,
respectively, in each index direction.

The arrays of discrete data are stored in the list of DataArray_t entities. The field GridLocation
specifies the location of the data with respect to the grid; if absent, the data is assumed to
coincide with grid vertices (i.e., GridLocation = Vertex). All data within a given instance of
DiscreteData_t must reside at the same grid location.

Rind is an optional field that indicates the number of rind planes included in the data. Its purpose
and function are identical to those described in Section 7.1. Note, however, that the Rind in this
structure is independent of the Rind contained in GridCoordinates_t or FlowSolution_t. They
are not required to contain the same number of rind planes. Also, the location of any rind points
is assumed to be consistent with the location of the ‘core’ data points (e.g. if GridLocation =
CellCenter, rind points are assumed to be located at fictitious cell centers).

DataClass defines the default class for data contained in the DataArray_t entities. For dimensional
data, DimensionalUnits may be used to describe the system of units employed. If present these
two entities take precedence over the corresponding entities at higher levels of the CGNS hierarchy.
The rules for determining precedence of entities of this type are discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

FUNCTION DataSize[]:

return value: one-dimensional int array of length IndexDimension
dependencies: IndexDimension, VertexSize[], CellSize[], GridLocation, Rind

The function DataSize[] is the size of discrete-data arrays. It is identical to the function Data-
Size[] defined for FlowSolution_t (see Section 7.7).

12.5 Integral Data Structure Definition: IntegralData_t

IntegralData_t provides a description of generic global or integral data that may be associated
with a particular zone or an entire database. In contrast to DiscreteData_t, integral data is not
associated with any specific field location.

IntegralData_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

List( DataArray_t<DataType, 1, 1> DataArray1 ... DataArrayN ) ; (o)

151



AIAA R-101A-2005

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of DiscreteData_t and shall not include the names DataClass or Dimen-
sionalUnits.

2. There are no required fields for IntegralData_t.
3. The structure parameter DataType must be consistent with the data stored in the DataAr-

ray_t entities (see Section 5.1).

DataClass defines the default class for data contained in the DataArray_t entities. For dimensional
data, DimensionalUnits may be used to describe the system of units employed. If present these
two entities take precedence over the corresponding entities at higher levels of the CGNS hierarchy.
The rules for determining precedence of entities of this type are discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

12.6 Family Data Structure Definition: Family_t

Geometric associations need to be set through one layer of indirection. That is, rather than setting
the geometry data for each mesh entity (nodes, edges, and faces), they are associated to intermediate
objects. The intermediate objects are in turn linked to nodal regions of the computational mesh.
We define a CFD family as this intermediate object. This layer of indirection is necessary since
there is rarely a 1-to-1 connection between mesh regions and geometric entities.

The Family_t data structure holds the CFD family data. Each mesh surface is linked to the
geometric entities of the CAD databases by a name attribute. This attribute corresponds to a
family of CAD geometric entities on which the mesh face is projected. Each one of these geometric
entities is described in a CAD file and is not redefined within the CGNS file. A Family_t data
structure may be included in the CGNSBase_t structure for each CFD family of the model.

The Family_t structure contains all information pertinent to a CFD family. This information
includes the name attribute or family name, the boundary conditions applicable to these mesh
regions, and the referencing to the CAD databases.

Family_t :=

152



AIAA R-101A-2005

{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

FamilyBC_t FamilyBC ; (o)

List( GeometryReference_t GeometryReference1 ... GeometryReferenceN ) ; (o)

RotatingCoordinates_t RotatingCoordinates ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)

int Ordinal ; (o)
} ;

Notes

1. All data structures contained in Family_t are optional.
2. Default names for the Descriptor_t, GeometryReference_t, and UserDefinedData_t lists

are as shown; users may choose other legitimate names. Legitimate names must be unique at
this level and must not include the names FamilyBC, Ordinal, or RotatingCoordinates.

3. The CAD referencing data are written in the GeometryReference_t data structures. They
identify the CAD systems and databases where the geometric definition of the family is stored.

4. The boundary condition type pertaining to a family is contained in the data structure Fam-
ilyBC_t. If this boundary condition type is to be used, the BCType specified under BC_t must
be FamilySpecified.

5. For the purpose of defining zone properties, families are extended to a volume of cells. In
such case, the GeometryReference_t structures are not used.

6. The mesh is linked to the family by attributing a family name to a BC patch or a zone in the
data structure BC_t or Zone_t, respectively.

7. Ordinal is defined in the SIDS as a user-defined integer with no restrictions on the values
that it can contain. It may be used here to attribute a number to the family.

Rotation of the CFD family may be defined using the RotatingCoordinates_t data structure.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

12.7 Geometry Reference Structure Definition: GeometryReference_t

The standard interface data structure identifies the CAD systems used to generate the geometry, the
CAD files where the geometry is stored, and the geometric entities corresponding to the family. The
GeometryReference_t structures contain all the information necessary to associate a CFD family
to the CAD databases. For each GeometryReference_t structure, the CAD format is recorded in
GeometryFormat, and the CAD file in GeometryFile. The geometry entity or entities within this
CAD file that correspond to the family are recorded under the GeometryEntity_t nodes.

153



AIAA R-101A-2005

GeometryReference_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

GeometryFormat_t GeometryFormat ; (r)

GeometryFile_t GeometryFile ; (r)

List (GeometryEntity_t GeometryEntity1 ... GeometryEntityN) ; (o/d)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

The GeometryFormat is an enumeration type that identifies the CAD system used to generate the
geometry.

GeometryFormat_t := Enumeration(
Null,
NASA-IGES,
SDRC,
Unigraphics,
ProEngineer,
ICEM-CFD,
UserDefined ) ;

Notes

1. Default names for the Descriptor_t, GeometryEntity_t, and UserDefinedData_t lists are
as shown; users may choose other legitimate names. Legitimate names must be unique at this
level and must not include the names GeometryFile or GeometryFormat.

2. By default, there is only one GeometryEntity and its name is the family name.
3. There is no limit to the number of CAD files or CAD systems referenced in a CGNS file.

Different parts of the same model may be described with different CAD files of different CAD
systems.

4. Other CAD geometry formats may be added to this list as needed.

12.8 Family Boundary Condition Structure Definition: FamilyBC_t

One of the main advantages of the concept of a layer of indirection (called a family here) is that the
mesh density and the geometric entities may be modified without altering the association between
nodes and intermediate objects, or between intermediate objects and geometric entities. This
is very beneficial when handling boundary conditions and properties. Instead of setting boundary
conditions directly on mesh entities, or on CAD entities, they may be associated to the intermediate
objects. Since these intermediate objects are stable in the sense that they are not subject to mesh

154



AIAA R-101A-2005

or geometric variations, the boundary conditions do not need to be redefined each time the model
is modified. Using the concept of indirection, the boundary conditions and property settings are
made independent of operations such as geometric changes, modification of mesh topology (i.e.,
splitting into zones), mesh refinement and coarsening, etc.

The FamilyBC_t data structure contains the boundary condition type. It is envisioned that it will
be extended to hold both material and volume properties as well.

FamilyBC_t :=
{
BCType_t BCType; (r)

List( BCDataSet_t<ListLength>; BCDataSet1 ... BCDataSetN ) ; (o)
} ;

Notes

1. Default names for the BCDataSet_t list are as shown; users may choose other legitimate
names. Legitimate names must be unique within a given instance of FamilyBC_t and shall
not include the name BCType.

2. When BCDataSet_t structures are used to define boundary conditions for a CFD family,
the use of GridLocation, PointRange, and PointList in the BCDataSet_t structures is not
allowed.

BCType specifies the boundary-condition type, which gives general information on the boundary-
condition equations to be enforced. Boundary conditions are to be applied at the locations specified
by the BC_t structure(s) associated with the CFD family.

The FamilyBC_t structure provides for a list of boundary-condition data sets. In general, the proper
BCDataSet_t instance to impose on the CFD family is determined by the BCType association table
(Table 4 on p. 100). The mechanics of determining the proper data set to impose is described in
Section 9.8.

For a few boundary conditions, such as a symmetry plane or polar singularity, the value of BCType
completely describes the equations to impose, and no instances of BCDataSet_t are needed. For
“simple” boundary conditions, where a single set of Dirichlet and/or Neumann data is applied,
a single BCDataSet_t will likely appear (although this is not a requirement). For “compound”
boundary conditions, where the equations to impose are dependent on local flow conditions, several
instances of BCDataSet_t will likely appear; the procedure for choosing the proper data set is more
complex as described in Section 9.8.

12.9 User-Defined Data Structure Definition: UserDefinedData_t

Since the needs of all CGNS users cannot be anticipated, UserDefinedData_t provides a means
of storing arbitrary user-defined data in Descriptor_t and DataArray_t children without the
restrictions or implicit meanings imposed on these node types at other node locations.

155



AIAA R-101A-2005

UserDefinedData_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

GridLocation_t GridLocation ; (o/d)

IndexRange_t<IndexDimension> PointRange ; (o)
IndexArray_t<IndexDimension, ListLength, int> PointList ; (o)

List( DataArray_t<> DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

FamilyName_t FamilyName ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)

int Ordinal ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of UserDefinedData_t and shall not include the names DataClass, Dimen-
sionalUnits, FamilyName, GridLocation, Ordinal, PointList, or PointRange.

2. GridLocation may be set to Vertex, IFaceCenter, JFaceCenter, KFaceCenter, FaceCen-
ter, CellCenter, or EdgeCenter. If GridLocation is absent, then its default value is Vertex.
When GridLocation is set to Vertex, then PointList or PointRange refer to node indices,
for both structured and unstructured grids. When GridLocation is set to FaceCenter, then
PointList or PointRange refer to face elements.

3. GridLocation, PointRange, and PointList may only be used when UserDefinedData_t is
located below a Zone_t structure in the database hierarchy.

4. Only one of PointRange and PointList may be specified.

12.10 Gravity Data Structure Definition: Gravity_t

The Gravity_t data structure may be used to define the gravitational vector.

Gravity_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

156



AIAA R-101A-2005

DataArray_t<real, 1, PhysicalDimension> GravityVector ; (r)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance of
Gravity_t and shall not include the names DataClass, DimensionalUnits, or GravityVec-
tor.

The only required field under the Gravity_t data structure is GravityVector, which contains the
components of the gravity vector in the coordinate system being used.

DataClass defines the default class for data contained in the DataArray_t entity. For dimensional
data, DimensionalUnits may be used to describe the system of units employed. If present, these
two entities take precedence over the corresponding entities at higher levels of the CGNS hierarchy,
following the standard precedence rules.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

157





AIAA R-101A-2005

Annex A. Conventions for Data-Name Identifiers

Identifiers or names can be attached to DataArray_t entities to identify and describe the quantity
being stored. To facilitate communication between different application codes, we propose to estab-
lish a set of standardized data-name identifiers with fairly precise definitions. For any identifier in
this set, the associated data should be unambiguously understood. In essence, this section proposes
standardized terminology for labeling CFD-related data, including grid coordinates, flow solution,
turbulence model quantities, nondimensional governing parameters, boundary condition quantities,
and forces and moments.

We use the convention that all standardized identifiers denote scalar quantities; this is consistent
with the intended use of the DataArray_t structure type to describe an array of scalars. For
quantities that are vectors, such as velocity, their components are listed.

Included with the lists of standard data-name identifiers, the fundamental units of dimensions
associated with that quantity are provided. The following notation is used for the fundamental
units: M is mass, L is length, T is time, Θ is temperature, α is angle, and I is electric current.
These fundamental units are directly associated with the elements of the DimensionalExponents_t
structure. For example, a quantity that has dimensions ML/T corresponds to MassExponent =
+1, LengthExponent = +1, and TimeExponent = -1.

Unless otherwise noted, all quantities in the following sections denote floating-point data types,
and the appropriate DataType structure parameter for DataArray_t is real.

A.1 Coordinate Systems

Coordinate systems for identifying physical location are as follows:

System 3-D 2-D

Cartesian (x, y, z) (x, y) or (x, z) or (y, z)
Cylindrical (r, θ, z) (r, θ)
Spherical (r, θ, φ)
Auxiliary (ξ, η, ζ) (ξ, η) or (ξ, ζ) or (η, ζ)

Associated with these coordinate systems are the following unit vector conventions:

x-direction êx r-direction êr ξ-direction êξ
y-direction êy θ-direction êθ η-direction êη
z-direction êz φ-direction êφ ζ-direction êζ

Note that êr, êθ and êφ are functions of position.

We envision that one of the ‘standard’ coordinate systems (cartesian, cylindrical or spherical) will
be used within a zone (or perhaps the entire database) to define grid coordinates and other related
data. The auxiliary coordinates will be used for special quantities, including forces and moments,

159



AIAA R-101A-2005

which may not be defined in the same coordinate system as the rest of the data. When auxiliary
coordinates are used, a transformation must also be provided to uniquely define them. For example,
the transform from cartesian to orthogonal auxiliary coordinates is, êξêη

êζ

 = T

 êxêy
êz

 ,
where T is an orthonormal matrix (2×2 in 2-D and 3×3 in 3-D).

In addition, normal and tangential coordinates are often used to define boundary conditions and
data related to surfaces. The normal coordinate is identified as n with the unit vector ên.

The data-name identifiers defined for coordinate systems are listed in Table 15. All represent real
DataTypes, except for ElementConnectivity and ParentData, which are integer.

Table 15: Data-Name Identifiers for Coordinate Systems

Data-Name Identifier Description Units

CoordinateX x L
CoordinateY y L
CoordinateZ z L
CoordinateR r L
CoordinateTheta θ α
CoordinatePhi φ α

CoordinateNormal Coordinate in direction of ên L
CoordinateTangential Tangential coordinate (2-D only) L

CoordinateXi ξ L
CoordinateEta η L
CoordinateZeta ζ L

CoordinateTransform Transformation matrix (T) -

InterpolantsDonor Interpolation factors -

ElementConnectivity Nodes making up an element -
ParentData Element parent identification -

A.2 Flowfield Solution

This section describes data-name identifiers for typical Navier-Stokes solution variables. The list
is obviously incomplete, but should suffice for initial implementation of the CGNS system. The

160



AIAA R-101A-2005

variables listed in this section are dimensional or raw quantities; nondimensional parameters and
coefficients based on these variables are discussed in Annex A.4.

We use fairly universal notation for state variables. Static quantities are measured with the fluid
at speed: static density (ρ), static pressure (p), static temperature (T ), static internal energy per
unit mass (e), static enthalpy per unit mass (h), entropy (s), and static speed of sound (c). We also
approximate the true entropy by the function s̃ = p/ργ (this assumes an ideal gas). The velocity
is ~q = uêx + vêy + wêz, with magnitude q =

√
~q ·~q. Stagnation quantities are obtained by bringing

the fluid isentropically to rest; these are identified by a subscript ‘0’. The term ‘total’ is also used
to refer to stagnation quantities.

Conservation variables are density, momentum (ρ~q = ρuêx + ρvêy + ρwêz), and stagnation energy
per unit volume (ρe0).

For rotating coordinate systems, u, v, and w are the x, y, and z components of the velocity vector
in the inertial frame; ~ω is the rotation rate vector; ~R is a vector from the center of rotation to the
point of interest; and ~wr = ~ω× ~R is the rotational velocity vector of the rotating frame of reference,
with components wrx, wry, and wrz.

Molecular diffusion and heat transfer introduce the molecular viscosity (µ), kinematic viscosity
(ν) and thermal conductivity coefficient (k). These are obtained from the state variables through
auxiliary correlations. For a perfect gas, µ and k are functions of static temperature only.

The Navier-Stokes equations involve the strain tensor (¯̄S) and the shear-stress tensor (¯̄τ). Using
indicial notation, the 3-D cartesian components of the strain tensor are,

¯̄Si,j =

(
∂ui

∂xj
+
∂uj

∂xi

)
,

and the stress tensor is,

¯̄τ i,j = µ

(
∂ui

∂xj
+
∂uj

∂xi

)
+ λ

∂uk

∂xk
,

where (x1, x2, x3) = (x, y, z) and (u1, u2, u3) = (u, v, w). The bulk viscosity is usually approximated
as λ = −2/3µ.

Reynolds averaging of the Navier-Stokes equations introduce Reynolds stresses (−ρu′v′, etc.) and
turbulent heat flux terms (−ρu′e′, etc.), where primed quantities are instantaneous fluctuations and
the bar is an averaging operator. These quantities are obtained from auxiliary turbulence closure
models. Reynolds-stress models formulate transport equations for the Reynolds stresses directly;
whereas, eddy-viscosity models correlate the Reynolds stresses with the mean strain rate,

−u′v′ = νt

(
∂u

∂y
+
∂v

∂x

)
,

where νt is the kinematic eddy viscosity. The eddy viscosity is either correlated to mean flow quan-
tities by algebraic models or by auxiliary transport models. An example two-equation turbulence
transport model is the k-ε model, where transport equations are formulated for the turbulent kinetic
energy (k = 1

2(u′u′ + v′v′ + w′w′)) and turbulent dissipation (ε).

161



AIAA R-101A-2005

Skin friction evaluated at a surface is the dot product of the shear stress tensor with the surface
normal:

~τ = ¯̄τ ·n̂,

Note that skin friction is a vector.

The data-name identifiers defined for flow solution quantities are listed in Table 16.

Note that for some vector quantities, like momentum, the table only explicitly lists data-name
identifiers for the x, y, and z components, and for the magnitude. It should be understood, however,
that for any vector quantity with a standardized data name “Vector”, the following standardized
data names are also defined:

VectorX x-component of vector
VectorY y-component of vector
VectorZ z-component of vector
VectorR Radial component of vector
VectorTheta θ-component of vector
VectorPhi φ-component of vector
VectorMagnitude Magnitude of vector
VectorNormal Normal component of vector
VectorTangential Tangential component of vector (2-D only)

Also note that some data-name identifiers used with multi-species flows include the variable string
Symbol, which represents either the chemical symbol for a species, or a defined name for a mixture.
See Section 10.8 for examples, and Table 10 on p. 126 for a list of defined names.

Table 16: Data-Name Identifiers for Flow Solution Quantities

Data-Name Identifier Description Units

Potential Potential: ∇φ = ~q L2/T
StreamFunction Stream function (2-D): ∇×ψ = ~q L2/T

Density Static density (ρ) M/L3

Pressure Static pressure (p) M/(LT2)
Temperature Static temperature (T ) Θ
EnergyInternal Static internal energy per unit mass

(e)
L2/T2

Enthalpy Static enthalpy per unit mass (h) L2/T2

Entropy Entropy (s) ML2/(T2Θ)
EntropyApprox Approximate entropy (s̃ = p/ργ) L3γ−1/(Mγ−1T2)

DensityStagnation Stagnation density (ρ0) M/L3

PressureStagnation Stagnation pressure (p0) M/(LT2)
TemperatureStagnation Stagnation temperature (T0) Θ
EnergyStagnation Stagnation energy per unit mass

(e0)
L2/T2

Continued on next page

162



AIAA R-101A-2005

Table 16: Data-Name Identifiers for Flow Solution Quantities (Continued)

Data-Name Identifier Description Units

EnthalpyStagnation Stagnation enthalpy per unit mass
(h0)

L2/T2

EnergyStagnationDensity Stagnation energy per unit volume
(ρe0)

M/(LT2)

VelocityX x-component of velocity (u = ~q ·êx) L/T
VelocityY y-component of velocity (v = ~q ·êy) L/T
VelocityZ z-component of velocity (w = ~q ·êz) L/T
VelocityR Radial velocity component (~q ·êr) L/T
VelocityTheta Velocity component in θ direction

(~q ·êθ)
L/T

VelocityPhi Velocity component in φ direction
(~q ·êφ)

L/T

VelocityMagnitude Velocity magnitude (q =
√
~q ·~q) L/T

VelocityNormal Normal velocity component (~q ·n̂) L/T
VelocityTangential Tangential velocity component

(2-D)
L/T

VelocitySound Static speed of sound L/T
VelocitySoundStagnation Stagnation speed of sound L/T

MomentumX x-component of momentum (ρu) M/(L2T)
MomentumY y-component of momentum (ρv) M/(L2T)
MomentumZ z-component of momentum (ρw) M/(L2T)
MomentumMagnitude Magnitude of momentum (ρq) M/(L2T)

RotatingVelocityX x-component of velocity, relative to
rotating frame (urx = u− wrx)

L/T

RotatingVelocityY y-component of velocity, relative to
rotating frame (ury = v − wry)

L/T

RotatingVelocityZ z-component of velocity, relative to
rotating frame (urz = w − wrz)

L/T

RotatingMomentumX x-component of momentum,
relative to rotating frame (ρurx)

M/(L2T)

RotatingMomentumY y-component of momentum,
relative to rotating frame (ρury)

M/(L2T)

RotatingMomentumZ z-component of momentum,
relative to rotating frame (ρurz)

M/(L2T)

RotatingVelocityMagnitude Velocity magnitude in rotating
frame (qr =

√
u2

rx + u2
ry + u2

rz)
L/T

Continued on next page

163



AIAA R-101A-2005

Table 16: Data-Name Identifiers for Flow Solution Quantities (Continued)

Data-Name Identifier Description Units

RotatingPressureStagnation Stagnation pressure in rotating
frame

M/(LT2)

RotatingEnergyStagnation Stagnation energy per unit mass in
rotating frame ((e0)r)

L2/T2

RotatingEnergyStagnationDensity Stagnation energy per unit volume
in rotating frame (ρ(e0)r)

M/(LT2)

RotatingEnthalpyStagnation Stagnation enthalpy per unit mass
in rotating frame, rothalpy

L2/T2

EnergyKinetic (u2 + v2 + w2)/2 = q2/2 L2/T2

PressureDynamic ρq2/2 M/(LT2)

SoundIntensityDB Sound intensity level in decibels,
10 log10(I/Iref) = 20 log10(p/pref),
where I is the sound power per unit
area, Iref = 10−12 watts/m2 is the
reference sound power per unit
area, p is the pressure wave
amplitude, and pref = 2× 10−5

N/m2 is the reference pressure.

-

SoundIntensity Sound intensity (i.e., sound power
per unit area, I)

M/T3

VorticityX ωx = ∂w/∂y − ∂v/∂z = ~ω ·êx T−1

VorticityY ωy = ∂u/∂z − ∂w/∂x = ~ω ·êy T−1

VorticityZ ωz = ∂v/∂x− ∂u/∂y = ~ω ·êz T−1

VorticityMagnitude ω =
√
~ω ·~ω T−1

SkinFrictionX x-component of skin friction (~τ · êx) M/(LT2)
SkinFrictionY y-component of skin friction (~τ · êy) M/(LT2)
SkinFrictionZ z-component of skin friction (~τ · êz) M/(LT2)
SkinFrictionMagnitude Skin friction magnitude (

√
~τ ·~τ) M/(LT2)

VelocityAngleX Velocity angle
(arccos(u/q) ∈ [0, 180◦))

α

VelocityAngleY arccos(v/q) α
VelocityAngleZ arccos(w/q) α

VelocityUnitVectorX x-component of velocity unit vector
(~q ·êx/q)

-

Continued on next page

164



AIAA R-101A-2005

Table 16: Data-Name Identifiers for Flow Solution Quantities (Continued)

Data-Name Identifier Description Units

VelocityUnitVectorY y-component of velocity unit vector
(~q ·êy/q)

-

VelocityUnitVectorZ z-component of velocity unit vector
(~q ·êz/q)

-

MassFlow Mass flow normal to a plane (ρ~q ·n̂) M/(L2T)

ViscosityKinematic Kinematic viscosity (ν = µ/ρ) L2/T
ViscosityMolecular Molecular viscosity (µ) M/(LT)
ViscosityEddyKinematic Kinematic eddy viscosity (νt) L2/T
ViscosityEddy Eddy viscosity (µt) M/(LT)
ThermalConductivity Thermal conductivity coefficient (k) ML/(T3Θ)

PowerLawExponent Power-law exponent (n) in
molecular viscosity or thermal
conductivity model

-

SutherlandLawConstant Sutherland’s Law constant (Ts) in
molecular viscosity or thermal
conductivity model

Θ

TemperatureReference Reference temperature (Tref) in
molecular viscosity or thermal
conductivity model

Θ

ViscosityMolecularReference Reference viscosity (µref) in
molecular viscosity model

M/(LT)

ThermalConductivityReference Reference thermal conductivity
(kref) in thermal conductivity model

ML/(T3Θ)

IdealGasConstant Ideal gas constant (R = cp − cv) L2/(T2Θ)
SpecificHeatPressure Specific heat at constant pressure

(cp)
L2/(T2Θ)

SpecificHeatVolume Specific heat at constant volume
(cv)

L2/(T2Θ)

ReynoldsStressXX Reynolds stress −ρu′u′ M/(LT2)
ReynoldsStressXY Reynolds stress −ρu′v′ M/(LT2)
ReynoldsStressXZ Reynolds stress −ρu′w′ M/(LT2)
ReynoldsStressYY Reynolds stress −ρv′v′ M/(LT2)
ReynoldsStressYZ Reynolds stress −ρv′w′ M/(LT2)
ReynoldsStressZZ Reynolds stress −ρw′w′ M/(LT2)

Continued on next page

165



AIAA R-101A-2005

Table 16: Data-Name Identifiers for Flow Solution Quantities (Continued)

Data-Name Identifier Description Units

MolecularWeightSymbol Molecular weight for species Symbol -
HeatOfFormationSymbol Heat of formation per unit mass for

species Symbol
L2/T2

FuelAirRatio Fuel/air mass ratio -
ReferenceTemperatureHOF Reference temperature for the heat

of formation
Θ

MassFractionSymbol Mass of species Symbol, divided by
total mass

-

LaminarViscositySymbol Laminar viscosity of species Symbol M/(LT)
ThermalConductivitySymbol Thermal conductivity of species

Symbol
ML/(T3Θ)

EnthalpyEnergyRatio The ratio
β = h/e =

∫ T
Tref

cp dT/
∫ T
Tref

cv dT
-

CompressibilityFactor The gas constant of the mixture
divided by the freestream gas
constant, Z = R/R∞

-

VibrationalElectronEnergy Vibrational-electronic excitation
energy per unit mass

L2/T2

HeatOfFormation Heat of formation per unit mass for
the entire mixture, H =

∑n
i=1 YiHi,

where n is the number of species, Yi

is the mass fraction of species i,
and Hi is the heat of formation for
species i at the reference
temperature
ReferenceTemperatureHOF. This
requires that
ReferenceTemperatureHOF be
specified using the
ChemicalKineticsModel data
structure.

L2/T2

VibrationalElectronTemperature Vibrational electron temperature Θ
SpeciesDensitySymbol Density of species Symbol M/L3

MoleFractionSymbol Number of moles of species Symbol
divided by the total number of
moles for all species

-

Voltage Voltage ML2/TI
ElectricFieldX x-component of electric field vector ML/TI
ElectricFieldY y-component of electric field vector ML/TI

Continued on next page

166



AIAA R-101A-2005

Table 16: Data-Name Identifiers for Flow Solution Quantities (Continued)

Data-Name Identifier Description Units

ElectricFieldZ z-component of electric field vector ML/TI
MagneticFieldX x-component of magnetic field

vector
I/L

MagneticFieldY y-component of magnetic field
vector

I/L

MagneticFieldZ z-component of magnetic field
vector

I/L

CurrentDensityX x-component of current density
vector

I/L2

CurrentDensityY y-component of current density
vector

I/L2

CurrentDensityZ z-component of current density
vector

I/L2

ElectricConductivity Electrical conductivity ML/T3I2

LorentzForceX x-component of Lorentz force
vector

ML/T2

LorentzForceY y-component of Lorentz force vector ML/T2

LorentzForceZ z-component of Lorentz force vector ML/T2

JouleHeating Joule heating ML2/T2

LengthReference Reference length L L

167



AIAA R-101A-2005

A.3 Turbulence Model Solution

This section lists data-name identifiers for typical Reynolds-averaged Navier-Stokes turbulence
model variables. Turbulence model solution quantities and model constants present a particu-
larly difficult nomenclature problem—to be precise we need to identify both the variable and the
model (and version) that it comes from. The list in Table 17 falls short in this respect.

Table 17: Data-Name Identifiers for Typical Turbulence Models

Data-Name Identifier Description Units

TurbulentDistance Distance to nearest wall L

TurbulentEnergyKinetic k = 1
2(u′u′ + v′v′ + w′w′) L2/T2

TurbulentDissipation ε L2/T3

TurbulentDissipationRate ε/k = ω T−1

TurbulentBBReynolds Baldwin-Barth one-equation model RT -
TurbulentSANuTilde Spalart-Allmaras one-equation model ν̃ L2/T

A.4 Nondimensional Parameters

CFD codes are rich in nondimensional governing parameters, such as Mach number and Reynolds
number, and nondimensional flowfield coefficients, such as pressure coefficient. The problem with
these parameters is that their definitions and conditions that they are evaluated at can vary from
code to code. Reynolds number is particularly notorious in this respect.

These parameters have posed us with a difficult dilemma. Either we impose a rigid definition for
each and force all database users to abide by it, or we develop some methodology for describing the
particular definition that the user is employing. The first limits applicability and flexibility, and
the second adds complexity. We have opted for the second approach, but we include only enough
information about the definition of each parameter to allow for conversion operations. For example,
the Reynolds number includes velocity, length, and kinematic viscosity scales in its definition (i.e.
Re = V LR/ν). The database description of Reynolds number includes these different scales. By
providing these ‘definition components’, any code that reads Reynolds number from the database
can transform its value to an appropriate internal definition. These ‘definition components’ are
identified by appending a ‘_’ to the data-name identifier of the parameter.

Definitions for nondimensional flowfield coefficients follow: the pressure coefficient is defined as,

cp =
p− pref
1
2ρrefq

2
ref

,

168



AIAA R-101A-2005

where 1
2ρrefq

2
ref is the dynamic pressure evaluated at some reference condition, and pref is some

reference pressure. The skin friction coefficient is,

~cf =
~τ

1
2ρrefq

2
ref

,

where ~τ is the shear stress or skin friction vector. Usually, ~τ is evaluated at the wall surface.

The data-name identifiers defined for nondimensional governing parameters and flowfield coefficients
are listed in Table 18.

Table 18: Data-Name Identifiers for Nondimensional Parameters

Data-Name Identifier Description Units

Mach Mach number: M = q/c -
Mach_Velocity Velocity scale (q) L/T
Mach_VelocitySound Speed of sound scale (c) L/T
RotatingMach Mach number relative to rotating frame:

Mr = qr/c
-

Reynolds Reynolds number: Re = V LR/ν -
Reynolds_Velocity Velocity scale (V ) L/T
Reynolds_Length Length scale (LR) L
Reynolds_ViscosityKinematic Kinematic viscosity scale (ν) L2/T

Prandtl Prandtl number: Pr = µcp/k -
Prandtl_ThermalConductivity Thermal conductivity scale (k) ML/(T3Θ)
Prandtl_ViscosityMolecular Molecular viscosity scale (µ) M/(LT)
Prandtl_SpecificHeatPressure Specific heat scale (cp) L2/(T2Θ)
PrandtlTurbulent Turbulent Prandtl number, ρνtcp/kt -

SpecificHeatRatio Specific heat ratio: γ = cp/cv -
SpecificHeatRatio_Pressure Specific heat at constant pressure (cp) L2/(T2Θ)
SpecificHeatRatio_Volume Specific heat at constant volume (cv) L2/(T2Θ)

CoefPressure cp -
CoefSkinFrictionX ~cf ·êx -
CoefSkinFrictionY ~cf ·êy -
CoefSkinFrictionZ ~cf ·êz -

Coef_PressureDynamic ρrefq
2
ref/2 M/(LT2)

Coef_PressureReference pref M/(LT2)

169



AIAA R-101A-2005

A.5 Characteristics and Riemann Invariants Based on 1-D Flow

Boundary condition specification for inflow/outflow or farfield boundaries often involves Riemann
invariants or characteristics of the linearized inviscid flow equations. For an ideal compressible gas,
these are typically defined as follows: Riemann invariants for an isentropic 1-D flow are,[

∂

∂t
+ (u± c)

∂

∂x

](
u± 2

γ − 1
c

)
= 0.

Characteristic variables for the 3-D Euler equations linearized about a constant mean flow are,[
∂

∂t
+ Λ̄n

∂

∂x

]
W ′

n(x, t) = 0, n = 1, 2, . . . 5,

where the characteristics and corresponding characteristic variables are

Characteristic Λ̄n W ′
n

Entropy ū p′ − ρ′/c̄2

Vorticity ū v′

Vorticity ū w′

Acoustic ū± c̄ p′ ± u′/(ρ̄c̄)

Barred quantities are evaluated at the mean flow, and primed quantities are linearized perturba-
tions. The only non-zero mean-flow velocity component is ū. The data-name identifiers defined for
Riemann invariants and characteristic variables are listed in Table 19.

Table 19: Data-Name Identifiers for Characteristics and Riemann Invariants

Data-Name Identifier Description Units

RiemannInvariantPlus u+ 2c/(γ − 1) L/T
RiemannInvariantMinus u− 2c/(γ − 1) L/T

CharacteristicEntropy p′ − ρ′/c̄2 M/(LT2)
CharacteristicVorticity1 v′ L/T
CharacteristicVorticity2 w′ L/T
CharacteristicAcousticPlus p′ + u′/(ρ̄c̄) M/(LT2)
CharacteristicAcousticMinus p′ − u′/(ρ̄c̄) M/(LT2)

A.6 Forces and Moments

Conventions for data-name identifiers for forces and moments are defined in this section. Ideally,
forces and moments should be attached to geometric components or less ideally to surface grids.

170



AIAA R-101A-2005

Currently, the standard mechanism for storing forces and moments is generally through the Con-
vergenceHistory_t node described in Section 12.3, either attached to the entire configuration
(under CGNSBase_t, Section 6.2) or attached to a zone (under Zone_t, Section 6.3).

Given a differential force ~f (i.e. a force per unit area), the force integrated over a surface is,

~F = Fxêx + Fy êy + Fz êz =
∫
~f dA,

where êx, êy and êz are the unit vectors in the x, y and z directions, respectively. The moment
about a point ~r0 integrated over a surface is,

~M = Mxêx +My êy +Mz êz =
∫

(~r − ~r0)× ~f dA.

Lift and drag components of the integrated force are,

L = ~F · L̂ D = ~F · D̂

where L̂ and D̂ are the unit vectors in the positive lift and drag directions, respectively.

Lift, drag and moment are often computed in auxiliary coordinate frames (e.g. wind axes or
stability axes). We introduce the convention that lift, drag and moment are computed in the
(ξ, η, ζ) coordinate system. Positive drag is assumed parallel to the ξ-direction (i.e. D̂ = êξ); and
positive lift is assumed parallel to the η-direction (i.e. L̂ = êη). Thus, forces and moments defined
in this auxiliary coordinate system are,

L = ~F · êη D = ~F · êξ

~M = Mξ êξ +Mη êη +Mζ êζ =
∫

(~r − ~r0)× ~f dA.

Lift, drag and moment coefficients in 3-D are defined as,

CL =
L

1
2ρrefq

2
refSref

CD =
D

1
2ρrefq

2
refSref

~CM =
~M

1
2ρrefq

2
refcrefSref

,

where 1
2ρrefq

2
ref is a reference dynamic pressure, Sref is a reference area, and cref is a reference length.

For a wing, Sref is typically the wing area and cref is the mean aerodynamic chord. In 2-D, the
sectional force coefficients are,

cl =
L′

1
2ρrefq

2
refcref

cd =
D′

1
2ρrefq

2
refcref

~cm =
~M ′

1
2ρrefq

2
refc

2
ref

,

where the forces are integrated along a contour (e.g. an airfoil cross-section) rather than a surface.

The data-name identifiers and definitions provided for forces and moments and their associated
coefficients are listed in Table 20. For coefficients, the dynamic pressure and length scales used in
the normalization are provided.

171



AIAA R-101A-2005

Table 20: Data-Name Identifiers for Forces and Moments

Data-Name Identifier Description Units

ForceX Fx = ~F ·êx ML/T2

ForceY Fy = ~F ·êy ML/T2

ForceZ Fz = ~F ·êz ML/T2

ForceR Fr = ~F ·êr ML/T2

ForceTheta Fθ = ~F ·êθ ML/T2

ForcePhi Fφ = ~F ·êφ ML/T2

Lift L or L′ ML/T2

Drag D or D′ ML/T2

MomentX Mx = ~M ·êx ML2/T2

MomentY My = ~M ·êy ML2/T2

MomentZ Mz = ~M ·êz ML2/T2

MomentR Mr = ~M ·êr ML2/T2

MomentTheta Mθ = ~M ·êθ ML2/T2

MomentPhi Mφ = ~M ·êφ ML2/T2

MomentXi Mξ = ~M ·êξ ML2/T2

MomentEta Mη = ~M ·êη ML2/T2

MomentZeta Mζ = ~M ·êζ ML2/T2

Moment_CenterX x0 = ~r0 ·êx L
Moment_CenterY y0 = ~r0 ·êy L
Moment_CenterZ z0 = ~r0 ·êz L

CoefLift CL or cl -
CoefDrag CD or cd -
CoefMomentX ~CM ·êx or ~cm ·êx -
CoefMomentY ~CM ·êy or ~cm ·êy -
CoefMomentZ ~CM ·êz or ~cm ·êz -
CoefMomentR ~CM ·êr or ~cm ·êr -
CoefMomentTheta ~CM ·êθ or ~cm ·êθ -
CoefMomentPhi ~CM ·êφ or ~cm ·êφ -
CoefMomentXi ~CM ·êξ or ~cm ·êξ -
CoefMomentEta ~CM ·êη or ~cm ·êη -
CoefMomentZeta ~CM ·êζ or ~cm ·êζ -

Coef_PressureDynamic 1/2ρrefq
2
ref M/(LT2)

Coef_Area Sref L2

Coef_Length cref L

172



AIAA R-101A-2005

A.7 Time-Dependent Flow

Data-name identifiers related to time-dependent flow include those associated with the storage
of grid coordinates and flow solutions as a function of time level or iteration. Also included are
identifiers for storing information defining both rigid and arbitrary (i.e., deforming) grid motion.

Table 21: Data-Name Identifiers for Time-Dependent Flow

DataData-Name Identifier
Type

Description Units

TimeValues real Time values T
IterationValues int Iteration values -
NumberOfZones int Number of zones used for each recorded

step
-

NumberOfFamilies int Number of families used for each recorded
step

-

ZonePointers char Names of zones used for each recorded step -
FamilyPointers char Names of families used for each recorded

step
-

RigidGridMotionPointers char Names of RigidGridMotion structures
used for each recorded step for a zone

-

ArbitraryGridMotionPointers char Names of ArbitraryGridMotion structures
used for each recorded step for a zone

-

GridCoordinatesPointers char Names of GridCoordinates structures
used for each recorded step for a zone

-

FlowSolutionsPointers char Names of FlowSolutions structures used
for each recorded step for a zone

-

OriginLocation real Physical coordinates of the origin before
and after a rigid grid motion

L

RigidRotationAngle real Rotation angles about each axis of the
translated coordinate system for rigid grid
motion

α

RigidVelocity real Grid velocity vector of the origin
translation for rigid grid motion

L/T

RigidRotationRate real Rotation rate vector about the axis of the
translated coordinate system for rigid grid
motion

α/T

GridVelocityX real x-component of grid velocity L/T
GridVelocityY real y-component of grid velocity L/T
GridVelocityZ real z-component of grid velocity L/T

Continued on next page

173



AIAA R-101A-2005

Table 21: Data-Name Identifiers for Time-Dependent Flow (Continued)

DataData-Name Identifier
Type

Description Units

GridVelocityR real r-component of grid velocity L/T
GridVelocityTheta real θ-component of grid velocity α/T
GridVelocityPhi real φ-component of grid velocity α/T
GridVelocityXi real ξ-component of grid velocity L/T
GridVelocityEta real η-component of grid velocity L/T
GridVelocityZeta real ζ-component of grid velocity L/T

174



AIAA R-101A-2005

Annex B. Structured Two-Zone Flat Plate Example

This section describes a complete database for a sample test case. The test case is compressible
turbulent flow past a flat plat at zero incidence. The domain is divided into two zones as shown in
Figure 6. The interface between the two zones is 1-to-1.

Zone 1
25× 65× 3

Zone 2
49× 65× 3

-
6

x, i

y, j

Symmetry Solid wall

Outflow Outflow

Inflow Outflow

Figure 6: Two-Zone Flat Plate Test Case

The database description includes the following:

• range of indices within each zone

• grid coordinates of vertices

• flowfield solution at cell centers including a row of ghost-cells along each boundary; the
flowfield includes the conservation variables and a turbulent transport variable

• multizone interface connectivity information

• boundary condition information

• reference state

• description of the compressible Navier-Stokes equations including one-equation turbulence
model

Each of these items is described in separate sections to make the information more readable. The
same database is presented in each section, but only that information needed for the particular
focus is included. The overall layout of the database is presented in Annex B.1.

All data for this test case is nondimensional and is normalized consistently by the following (dimen-
sional) quantities: plate length L, freestream static density ρ∞, freestream static speed of sound c∞,
and freestream static temperature T∞. The fact that the database is completely nondimensional is
reflected in the value of the globally set data class.

175



AIAA R-101A-2005

B.1 Overall Layout

This section describes the overall layout of the database. Included are the cell dimension and
physical dimension of the grid, the globally set data class, the global reference state and flow-
equations description, and data pertaining to each zone. Each zone contains the grid size, grid
coordinates, flow solution, multizone interfaces and boundary conditions. All entities given by
{{*}} are expanded in subsequent sections. Note that because this example contains structured
zones, IndexDimension = CellDimension = 3 in each zone.

CGNSBase_t TwoZoneCase =
{{
int CellDimension = 3 ;
int PhysicalDimension = 3 ;

DataClass_t DataClass = NormalizedByUnknownDimensional ;

ReferenceState_t ReferenceState = {{*}} ;

FlowEquationSet_t<3> FlowEquationSet = {{*}} ;

! CellDimension = 3, PhysicalDimension = 3
Zone_t<3,3> Zone1 =
{{
int VertexSize = [25,65,3] ;
int CellSize = [24,64,2] ;
int VertexSizeBoundary = [0,0,0];

ZoneType_t ZoneType = Structured;

! IndexDimension = 3
GridCoordinates_t<3,VertexSize> GridCoordinates = {{*}} ;

FlowSolution_t<3,VertexSize,CellSize> FlowSolution = {{*}} ;

ZoneGridConnectivity_t<3,3> ZoneGridConnectivity = {{*}} ;

ZoneBC_t<3,3> ZoneBC = {{*}} ;
}} ; ! end Zone1

! CellDimension = 3, PhysicalDimension = 3
Zone_t<3,3> Zone2 =
{{
int VertexSize = [49,65,3] ;
int CellSize = [48,64,2] ;
int VertexSizeBoundary = [0,0,0];

176



AIAA R-101A-2005

ZoneType_t ZoneType = Structured;

! IndexDimension = 3
GridCoordinates_t<3,VertexSize> GridCoordinates = {{*}} ;

FlowSolution_t<3,VertexSize,CellSize> FlowSolution = {{*}} ;

ZoneGridConnectivity_t<3,3> ZoneGridConnectivity = {{*}} ;

ZoneBC_t<3,3> ZoneBC = {{*}} ;
}} ; ! end Zone2

}} ; ! end TwoZoneCase

B.2 Grid Coordinates

This section describes the grid-coordinate entities for each zone. Since the coordinates are all
nondimensional, the individual DataArray_t entities do not include a data-class qualifier; instead,
this information is derived from the globally set data class. The grid-coordinate entities for zone 2
are abbreviated.

CGNSBase_t TwoZoneCase =
{{
int CellDimension = 3 ;
int PhysicalDimension = 3 ;

DataClass_t DataClass = NormalizedByUnknownDimensional ;

! CellDimension = 3, PhysicalDimension = 3
Zone_t<3,3> Zone1 =
{{
int VertexSize = [25,65,3] ;
int CellSize = [24,64,2] ;
int VertexSizeBoundary = [0,0,0];

ZoneType_t ZoneType = Structured;

! IndexDimension = 3
! VertexSize = [25,65,3]
GridCoordinates_t<3, [25,65,3]> GridCoordinates =
{{
DataArray_t<real, 3, [25,65,3]> CoordinateX =
{{
Data(real, 3, [25,65,3]) = (((x(i,j,k), i=1,25), j=1,65), k=1,3) ;

177



AIAA R-101A-2005

}} ;

DataArray_t<real, 3, [25,65,3]> CoordinateY =
{{
Data(real, 3, [25,65,3]) = (((y(i,j,k), i=1,25), j=1,65), k=1,3) ;
}} ;

DataArray_t<real, 3, [25,65,3]> CoordinateZ =
{{
Data(real, 3, [25,65,3]) = (((z(i,j,k), i=1,25), j=1,65), k=1,3) ;
}} ;

}} ; ! end Zone1/GridCoordinates
}} ; ! end Zone1

! CellDimension = 3, PhysicalDimension = 3
Zone_t<3,3> Zone2 =
{{
int VertexSize = [49,65,3] ;
int CellSize = [48,64,2] ;
int VertexSizeBoundary = [0,0,0];

ZoneType_t ZoneType = Structured;

! IndexDimension = 3
! VertexSize = [49,65,3]
GridCoordinates_t<3, [49,65,3]> GridCoordinates =
{{
DataArray_t<real, 3, [49,65,3]> CoordinateX = {{*}} ;
DataArray_t<real, 3, [49,65,3]> CoordinateY = {{*}} ;
DataArray_t<real, 3, [49,65,3]> CoordinateZ = {{*}} ;
}} ; ! end Zone2/GridCoordinates

}} ; ! end Zone2
}} ; ! end TwoZoneCase

B.3 Flowfield Solution

This section provides a description of the flowfield solution including the conservation variables
and the Spalart-Allmaras turbulent-transport quantity (ν̃). The flowfield solution is given at cell
centers with a single row of ghost-cell values along each boundary.

As with the case for grid coordinates, the flow solution is nondimensional, and this fact is derived
from the globally set data class. The normalizations for each flow variable are,

ρ′ijk =
ρijk

ρ∞
, (ρu)′ijk =

(ρu)ijk

ρ∞c∞
, (ρe0)′ijk =

(ρe0)ijk

ρ∞c2∞
, ν̃ ′ijk =

ν̃ijk

c∞L
,

178



AIAA R-101A-2005

where primed quantities are nondimensional and all others are dimensional.

Only the Density entity for zone 1 is fully described in the following. The momentum, energy and
turbulence solution are abbreviated. The entire flow-solution data for zone 2 is also abbreviated.

CGNSBase_t TwoZoneCase =
{{
int CellDimension = 3 ;
int PhysicalDimension = 3 ;

DataClass_t DataClass = NormalizedByUnknownDimensional ;

! CellDimension = 3, PhysicalDimension = 3
Zone_t<3,3> Zone1 =
{{
int VertexSize = [25,65,3] ;
int CellSize = [24,64,2] ;
int VertexSizeBoundary = [0,0,0];

ZoneType_t ZoneType = Structured;

! IndexDimension = 3
! VertexSize = [25,65,3]
! CellSize = [24,64,2]
FlowSolution_t<3, [25,65,3], [24,64,2]> FlowSolution =
{{
GridLocation_t GridLocation = CellCenter ;

! IndexDimension = 3
Rind_t<3> Rind =
{{
int[6] RindPlanes = [1,1,1,1,1,1] ;
}} ;

! IndexDimension = 3
! DataSize = CellSize + [2,2,2] = [26,66,4]
DataArray_t<real, 3, [26,66,4]> Density =
{{
Data(real, 3, [26,66,4]) = (((rho(i,j,k), i=0,25), j=0,65), k=0,3) ;
}} ;

DataArray_t<real, 3, [26,66,4]> MomentumX = {{*}} ;
DataArray_t<real, 3, [26,66,4]> MomentumY = {{*}} ;
DataArray_t<real, 3, [26,66,4]> MomentumZ = {{*}} ;
DataArray_t<real, 3, [26,66,4]> EnergyStagnationDensity = {{*}} ;
DataArray_t<real, 3, [26,66,4]> TurbulentSANutilde = {{*}} ;

179



AIAA R-101A-2005

}} ; ! end Zone1/FlowSolution
}} ; ! end Zone1

Zone_t<3,3> Zone2 = {{*}} ;
}} ; ! end TwoZoneCase

B.4 Interface Connectivity

This section describes the interface connectivity between zones 1 and 2; it also includes the k-plane
periodicity for each zone (which is essentially an interface connectivity of a zone onto itself). Each
interface entity is repeated with the receiver and donor-zone roles reversed; this includes the periodic
k-plane interfaces. Since each interface is a complete zone face, the GridConnectivity1to1_t
entities are named after the face.

Because of the orientation of the zones, the index transformation matrices (Transform) for all
interfaces are diagonal. This means that each matrix is its own inverse, and the value of Transform
is the same for every pair of interface entities.

CGNSBase_t TwoZoneCase =
{{
int CellDimension = 3 ;
int PhysicalDimension = 3 ;

! ----- ZONE 1 Interfaces ------

! CellDimension = 3, PhysicalDimension = 3
Zone_t<3,3> Zone1 =
{{
int VertexSize = [25,65,3] ;
int CellSize = [24,64,2] ;
int VertexSizeBoundary = [0,0,0];

ZoneType_t ZoneType = Structured;

! IndexDimension = 3, CellDimension = 3
ZoneGridConnectivity_t<3,3> ZoneGridConnectivity =
{{

! IndexDimension = 3
GridConnectivity1to1_t<3> IMax = ! ZONE 1 IMax
{{
int[3] Transform = [1,2,3] ;
IndexRange_t<3> PointRange =

180



AIAA R-101A-2005

{{
int[3] Begin = [25,1 ,1] ;
int[3] End = [25,65,3] ;
}} ;

IndexRange_t<3> PointRangeDonor =
{{
int[3] Begin = [1,1 ,1] ;
int[3] End = [1,65,3] ;
}} ;

Identifier(Zone_t) ZoneDonorName = Zone2 ;
}} ;

GridConnectivity1to1_t<3> KMin = ! ZONE 1 KMin
{{
int[3] Transform = [1,2,-3] ;
IndexRange_t<3> PointRange =
{{
int[3] Begin = [1 ,1 ,1] ;
int[3] End = [25,65,1] ;
}} ;

IndexRange_t<3> PointRangeDonor =
{{
int[3] Begin = [1 ,1 ,3] ;
int[3] End = [25,65,3] ;
}} ;

Identifier(Zone_t) ZoneDonorName = Zone1 ;
}} ;

GridConnectivity1to1_t<3> KMax = ! ZONE 1 KMax
{{
int[3] Transform = [1,2,-3] ;
IndexRange_t<3> PointRange =
{{
int[3] Begin = [1 ,1 ,3] ;
int[3] End = [25,65,3] ;
}} ;

IndexRange_t<3> PointRangeDonor =
{{
int[3] Begin = [1 ,1 ,1] ;
int[3] End = [25,65,1] ;
}} ;

Identifier(Zone_t) ZoneDonorName = Zone1 ;
}} ;

}} ; ! end Zone1/ZoneGridConnectivity
}} ; ! end Zone1

181



AIAA R-101A-2005

! ----- ZONE 2 Interfaces ------

! CellDimension = 3, PhysicalDimension = 3
Zone_t<3,3> Zone2 =
{{
int VertexSize = [49,65,3] ;
int CellSize = [48,64,2] ;
int VertexSizeBoundary = [0,0,0];

ZoneType_t ZoneType = Structured;

! IndexDimension = 3, CellDimension = 3
ZoneGridConnectivity_t<3,3> ZoneGridConnectivity =
{{

! IndexDimension = 3
GridConnectivity1to1_t<3> IMin = ! ZONE 2 IMin
{{
int[3] Transform = [1,2,3] ;
IndexRange_t<3> PointRange =
{{
int[3] Begin = [1,1 ,1] ;
int[3] End = [1,65,3] ;
}} ;

IndexRange_t<3> PointRangeDonor =
{{
int[3] Begin = [25,1 ,1] ;
int[3] End = [25,65,3] ;
}} ;

Identifier(Zone_t) ZoneDonorName = Zone1 ;
}} ;

GridConnectivity1to1_t<3> KMin = ! ZONE 2 KMin
{{
int[3] Transform = [1,2,-3] ;
IndexRange_t<3> PointRange =
{{
int[3] Begin = [1 ,1 ,1] ;
int[3] End = [49,65,1] ;
}} ;

IndexRange_t<3> PointRangeDonor =
{{
int[3] Begin = [1 ,1 ,3] ;

182



AIAA R-101A-2005

int[3] End = [49,65,3] ;
}} ;

Identifier(Zone_t) ZoneDonorName = Zone2 ;
}} ;

GridConnectivity1to1_t<3> KMax = ! ZONE 2 KMax
{{
int[3] Transform = [1,2,-3] ;
IndexRange_t<3> PointRange =
{{
int[3] Begin = [1 ,1 ,3] ;
int[3] End = [49,65,3] ;
}} ;

IndexRange_t<3> PointRangeDonor =
{{
int[3] Begin = [1 ,1 ,1] ;
int[3] End = [49,65,1] ;
}} ;

Identifier(Zone_t) ZoneDonorName = Zone2 ;
}} ;

}} ; ! end Zone2/ZoneGridConnectivity
}} ; ! end Zone2

}} ; ! end TwoZoneCase

B.5 Boundary Conditions

Boundary conditions for the flat plate case are described in this section. The minimal information
necessary is included in each boundary condition; this includes the boundary-condition type and
BC-patch specification. The lone exception is the viscous wall, which is isothermal and has an
imposed temperature profile (given by the array temperatureprofile()). For all other boundary
conditions a flow solver is free to impose appropriate BC-data since none is provided in the following.
The imposed BC-data for all cases should be evaluated at the globally set reference state, since no
other reference states have been specified.

No boundary condition descriptions are provided for the multizone interface or for the k-plane
periodicity in each zone. All relevant information is provided for these interfaces in the GridCon-
nectivity1to1_t entities of the previous section.

The practice of naming BC_t entities after the face is followed.

CGNSBase_t TwoZoneCase =
{{
int CellDimension = 3 ;
int PhysicalDimension = 3 ;

183



AIAA R-101A-2005

DataClass_t DataClass = NormalizedByUnknownDimensional ;

! ----- ZONE 1 BC’s ------

! CellDimension = 3, PhysicalDimension = 3
Zone_t<3,3> Zone1 =
{{
int VertexSize = [25,65,3] ;
int CellSize = [24,64,2] ;
int VertexSizeBoundary = [0,0,0];

ZoneType_t ZoneType = Structured;

! IndexDimension = 3, PhysicalDimension = 3
ZoneBC_t<3,3> ZoneBC =
{{

! IndexDimension = 3, PhysicalDimension = 3
BC_t<3,3> IMin = ! ZONE 1 IMin
{{
BCType_t BCType = BCInflowSubsonic ;
IndexRange_t<3> PointRange =
{{
int[3] Begin = [1,1 ,1] ;
int[3] End = [1,65,3] ;
}} ;

}} ;

BC_t<3,3> JMin = ! ZONE 1 JMin
{{
BCType_t BCType = BCSymmetryPlane ;
IndexRange_t<3> PointRange =
{{
int[3] Begin = [1 ,1,1] ;
int[3] End = [25,1,3] ;
}} ;

}} ;

BC_t<3,3> JMax = ! ZONE 1 JMax
{{
BCType_t BCType = BCOutFlowSubsonic ;
IndexRange_t<3> PointRange =
{{
int[3] Begin = [1 ,65,1] ;
int[3] End = [25,65,3] ;

184



AIAA R-101A-2005

}} ;
}} ;

}} ; ! end Zone1/ZoneBC
}} ; ! end Zone1

! ----- ZONE 2 BC’s ------

! CellDimension = 3, PhysicalDimension = 3
Zone_t<3,3> Zone2 =
{{
int VertexSize = [49,65,3] ;
int CellSize = [48,64,2] ;
int VertexSizeBoundary = [0,0,0];

ZoneType_t ZoneType = Structured;

! IndexDimension = 3, PhysicalDimension = 3
ZoneBC_t<3,3> ZoneBC =
{{

! IndexDimension = 3, PhysicalDimension = 3
BC_t<3,3> IMax = ! ZONE 2 IMax
{{
BCType_t BCType = BCOutflowSubsonic ;
IndexRange_t<3> PointRange =
{{
int[3] Begin = [49,1 ,1] ;
int[3] End = [49,65,3] ;
}} ;

}} ; ! end Zone2/ZoneBC/IMax

BC_t<3,3> JMin = ! ZONE 2 JMin
{{
BCType_t BCType = BCWallViscous ;
IndexRange_t<3> PointRange =
{{
int[3] Begin = [1 ,1,1] ;
int[3] End = [49,1,3] ;
}} ;

! ListLength = 49*3 = 147
BCDataSet<147> BCDataSet =
{{
BCTypeSimple_t BCTypeSimple = BCWallViscousIsothermal ;

185



AIAA R-101A-2005

! Data array length = ListLength = 147
BCData_t<147> DirichletData =
{{
DataArray_t<real, 1, 147> Temperature =
{{
Data(real, 1, 147) = (temperatureprofile(n), n=1,147) ;
}} ;

}} ;
}} ;

}} ; ! end Zone2/ZoneBC/JMin

BC_t<3,3> JMax = ! ZONE 2 JMax
{{
BCType_t BCType = BCOutFlowSubsonic ;
IndexRange_t<3> PointRange =
{{
int[3] Begin = [1 ,65,1] ;
int[3] End = [49,65,3] ;
}} ;

}} ; ! end Zone2/ZoneBC/JMax

}} ; ! end Zone2/ZoneBC
}} ; ! end Zone2

}} ; ! end TwoZoneCase

B.6 Global Reference State

This section provides a description of the freestream reference state. As previously stated, all data
is nondimensional including all reference state quantities. The dimensional plate length L and
freestream scales ρ∞, c∞ and T∞ are used for normalization.

The freestream Mach number is 0.5 and the Reynolds number is 106 based on freestream velocity and
kinematic viscosity and the plate length. These are the only nondimensional parameters included
in the reference state. The defining scales for each parameter are also included; these defining scales
are nondimensional.

Using consistent normalization, the following nondimensional freestream quantities are defined:

ρ′∞ = 1 (ρ0)′∞ = ρ′∞Γ1/(γ−1) L′ = 1
c′∞ = 1 (c0)′∞ = c′∞Γ1/2 u′∞ = M∞ = 0.5
T ′∞ = 1 (T0)′∞ = T ′∞Γ v′∞ = 0
p′∞ = 1/γ (p0)′∞ = p′∞Γγ/(γ−1) w′∞ = 0
e′∞ = 1/γ(γ − 1) (e0)′∞ = e′∞Γ ν ′∞ = u′∞L

′/Re = 5×10−7

h′∞ = 1/(γ − 1) (h0)′∞ = h′∞Γ s̃′∞ = p′∞/(ρ
′
∞)γ = 1/γ

186



AIAA R-101A-2005

where Γ ≡ 1 + γ−1
2 M2

∞ based on M∞ = 0.5 and γ = 1.4.

Except for the nondimensional parameters Mach number and Reynolds number, all DataArray_t
entities are abbreviated.

CGNSBase_t TwoZoneCase =
{{

DataClass_t DataClass = NormalizedByUnknownDimensional ;

ReferenceState_t ReferenceState =
{{
Descriptor_t ReferenceStateDescription =
{{
Data(char, 1, 10) = "Freestream" ;
}} ;

DataArray_t<real, 1, 1> Mach =
{{
Data(real, 1, 1) = 0.5 ;
DataClass_t DataClass = NondimensionalParameter ;
}} ;

DataArray_t<real, 1, 1> Mach_Velocity = {{ 0.5 }} ;
DataArray_t<real, 1, 1> Mach_VelocitySound = {{ 1 }} ;

DataArray_t<real, 1, 1> Reynolds =
{{
Data(real, 1, 1) = 1.0e+06 ;
DataClass_t DataClass = NondimensionalParameter ;
}} ;

DataArray_t<real, 1, 1> Reynolds_Velocity = {{ 0.5 }} ;
DataArray_t<real, 1, 1> Reynolds_Length = {{ 1. }} ;
DataArray_t<real, 1, 1> Reynolds_ViscosityKinematic = {{ 5.0E-07 }} ;

DataArray_t<real, 1, 1> Density = {{ 1. }} ;
DataArray_t<real, 1, 1> LengthReference = {{ 1. }} ;
DataArray_t<real, 1, 1> VelocitySound = {{ 1. }} ;
DataArray_t<real, 1, 1> VelocityX = {{ 0.5 }} ;
DataArray_t<real, 1, 1> VelocityY = {{ 0 }};
DataArray_t<real, 1, 1> VelocityZ = {{ 0 }} ;
DataArray_t<real, 1, 1> Pressure = {{ 0.714286 }} ;
DataArray_t<real, 1, 1> Temperature = {{ 1. }} ;
DataArray_t<real, 1, 1> EnergyInternal = {{ 1.785714 }} ;
DataArray_t<real, 1, 1> Enthalpy = {{ 2.5 }} ;
DataArray_t<real, 1, 1> EntropyApprox = {{ 0.714286 }} ;

187



AIAA R-101A-2005

DataArray_t<real, 1, 1> DensityStagnation = {{ 1.129726 }} ;
DataArray_t<real, 1, 1> PressureStagnation = {{ 0.847295 }} ;
DataArray_t<real, 1, 1> EnergyStagnation = {{ 1.875 }} ;
DataArray_t<real, 1, 1> EnthalpyStagnation = {{ 2.625 }} ;
DataArray_t<real, 1, 1> TemperatureStagnation = {{ 1.05 }} ;
DataArray_t<real, 1, 1> VelocitySoundStagnation = {{ 1.024695 }} ;

DataArray_t<real, 1, 1> ViscosityKinematic = {{ 5.0E-07 }} ;
}} ;

}} ; ! end TwoZoneCase

B.7 Equation Description

This section provides a description of the flow equations used to solve the problem. The flow
equation set is turbulent, compressible 3-D Navier-Stokes with the Spalart-Allmaras (S-A) one-
equation turbulence model. The thin-layer Navier-Stokes diffusion terms are modeled; only diffusion
in the j-coordinate direction is included.

A perfect gas assumption is made with γ = 1.4; based on the normalization used in this database, the
nondimensional scales defining γ are (cp)′ = 1/(γ−1) and (cv)′ = 1/γ(γ−1). The molecular viscosity
is obtained from Sutherland’s Law. In order to nondimensionalize the viscosity formula, standard
atmospheric conditions are assumed (i.e. T∞ = 288.15 K). A constant Prandtl number assumption
is made for the thermal conductivity coefficient; Pr = 0.72. The defining scales of Pr are evaluated
at freestream conditions; the nondimensional thermal conductivity is k′∞ = µ′∞(cp)′/Pr.

The Navier-Stokes equations are closed with an eddy viscosity assumption using the S-A model. A
turbulent Prandtl number of Prt = 0.9 is prescribed. All parameters not provided are defaulted.

Except for the nondimensional parameters γ and Pr, all DataArray_t entities are abbreviated.

CGNSBase_t TwoZoneCase =
{{
int CellDimension = 3 ;
int PhysicalDimension = 3 ;

DataClass_t DataClass = NormalizedByUnknownDimensional ;

! CellDimension = 3
FlowEquationSet_t<3> FlowEquationSet =
{{
int EquationDimension = 3

! CellDimension = 3 ;
GoverningEquations_t<3> GoverningEquations =
{{
GoverningEquationsType_t GoverningEquationsType = NSTurbulent ;

188



AIAA R-101A-2005

int[6] DiffusionModel = [0,1,0,0,0,0] ;
}} ;

GasModel_t GasModel =
{{
GasModelType_t GasModelType = CaloricallyPerfect ;

DataArray_t<real, 1, 1> SpecificHeatRatio =
{{
Data(real, 1, 1) = 1.4 ;
DataClass_t DataClass = NondimensionalParameter ;
}} ;

DataArray_t<real, 1, 1> SpecificHeatRatio_Pressure = {{ 2.5 }} ;
DataArray_t<real, 1, 1> SpecificHeatRatio_Volume = {{ 1.785714 }} ;
}} ;

ViscosityModel_t ViscosityModel =
{{
ViscosityModelType_t ViscosityModelType = SutherLandLaw ;

DataArray_t<real, 1, 1> SutherLandLawConstant = {{ 0.38383 }} ;
DataArray_t<real, 1, 1> TemperatureReference = {{ 1.05491 }} ;
DataArray_t<real, 1, 1> ViscosityMolecularReference = {{ 5.0E-07 }} ;
}} ;

ThermalConductivityModel_t ThermalConductivityModel =
{{
ThermalConductivityModelType_t ThermalConductivityModelType =
ConstantPrandtl ;

DataArray_t<real, 1, 1> Prandtl =
{{
Data(real, 1, 1) = 0.72 ;
DataClass_t DataClass = NondimensionalParameter ;
}} ;

DataArray_t<real, 1, 1> Prandtl_ThermalConductivity = {{ 1.73611E-0.6 }} ;
DataArray_t<real, 1, 1> Prandtl_ViscosityMolecular = {{ 5.0E-0.7 }} ;
DataArray_t<real, 1, 1> Prandtl_SpecificHeatPressure = {{ 2.5 }} ;
}} ;

TurbulenceClosure_t TurbulenceClosure =
{{
TurbulenceClosureType_t TurbulenceClosureType = EddyViscosity ;

189



AIAA R-101A-2005

DataArray<real, 1, 1> PrandtlTurbulent = {{ 0.90 }} ;
}} ;

TurbulenceModel_t<3> TurbulenceModel =
{{
TurbulenceModelType_t TurbulenceModelType =
OneEquation_SpalartAllmaras ;

int[6] DiffusionModel = [0,1,0,0,0,0] ;
}} ;

}} ; ! end FlowEquationSet
}} ; ! TwoZoneCase

190



 

American Institute of 
Aeronautics and Astronautics 

 
1801 Alexander Bell Drive, Suite 500 

Reston, VA 20191-4344 

ISBN  1-56347-930-3 


	Foreword
	Introduction
	Major Differences from Previous CGNS Versions
	Version 2.0, Beta 1
	Version 2.0, Beta 2
	Version 2.1, Beta 1
	Version 2.2, Beta 1
	Version 2.3
	Version 2.4


	Design Philosophy of Standard Interface Data Structures
	Conventions
	Data Structure Notation Conventions
	Structured Grid Notation and Indexing Conventions
	Unstructured Grid Element Numbering Conventions
	1-D (Line) Elements
	2-D (Surface) Elements
	Triangular Elements
	Quadrilateral Elements

	3-D (Volume) Elements
	Tetrahedral Elements
	Pyramid Elements
	Pentahedral Elements
	Hexahedral Elements

	Unstructured Grid Example

	Multizone Interfaces

	Building-Block Structure Definitions
	Definition: DataClass_t
	Definition: Descriptor_t
	Definition: DimensionalUnits_t
	Definition: DimensionalExponents_t
	Definition: GridLocation_t
	Definition: IndexArray_t
	Definition: IndexRange_t
	Definition: Rind_t

	Data-Array Structure Definitions
	Definition: DataArray_t
	Definition: DataConversion_t

	Data Manipulation
	Dimensional Data
	Nondimensional Data Normalized by Dimensional Quantities
	Nondimensional Data Normalized by Unknown Dimensional Quantities
	Nondimensional Parameters
	Dimensionless Constants

	Data-Array Examples

	Hierarchical Structures
	CGNS Version
	CGNS Entry Level Structure Definition: CGNSBase_t
	Zone Structure Definition: Zone_t
	Precedence Rules and Scope Within the Hierarchy

	Grid Coordinates, Elements, and Flow Solutions
	Grid Coordinates Structure Definition: GridCoordinates_t
	Grid Coordinates Examples
	Elements Structure Definition: Elements_t
	Elements Examples
	Axisymmetry Structure Definition: Axisymmetry_t
	Rotating Coordinates Structure Definition: RotatingCoordinates_t
	Flow Solution Structure Definition: FlowSolution_t
	Flow Solution Example

	Multizone Interface Connectivity
	Zonal Connectivity Structure Definition: ZoneGridConnectivity_t
	1-to-1 Interface Connectivity Structure Definition: GridConnectivity1to1_t
	1-to-1 Interface Connectivity Examples
	General Interface Connectivity Structure Definition: GridConnectivity_t
	Grid Connectivity Property Structure Definition: GridConnectivityProperty_t
	Periodic Interface Structure Definition: Periodic_t
	Average Interface Structure Definition: AverageInterface_t

	Overset Grid Holes Structure Definition: OversetHoles_t

	Boundary Conditions
	Boundary Condition Structures Overview
	Zonal Boundary Condition Structure Definition: ZoneBC_t
	Boundary Condition Structure Definition: BC_t
	Boundary Condition Data Set Structure Definition: BCDataSet_t
	Boundary Condition Data Structure Definition: BCData_t
	Boundary Condition Property Structure Definition: BCProperty_t
	Wall Function Structure Definition: WallFunction_t
	Area Structure Definition: Area_t

	Boundary Condition Type Structure Definition: BCType_t
	Matching Boundary Condition Data Sets
	Boundary Condition Specification Data
	Boundary Condition Examples

	Governing Flow Equations
	Flow Equation Set Structure Definition: FlowEquationSet_t
	Governing Equations Structure Definition: GoverningEquations_t
	Thermodynamic Gas Model Structure Definition:  GasModel_t
	Molecular Viscosity Model Structure Definition: ViscosityModel_t
	Thermal Conductivity Model Structure Definition: ThermalConductivityModel_t
	Turbulence Structure Definitions
	Turbulence Closure Structure Definition: TurbulenceClosure_t
	Turbulence Model Structure Definition: TurbulenceModel_t

	Thermal Relaxation Model Structure Definition:  ThermalRelaxationModelType_t
	Chemical Kinetics Structure Definition: ChemicalKineticsModel_t
	Electromagnetics Structure Definitions
	Electromagnetics Electric Field Model Structure Definition: EMElectricFieldModel_t
	Electromagnetics Magnetic Field Model Structure Definition: EMMagneticFieldModel_t
	Electromagnetics Conductivity Model Structure Definition: EMConductivityModel_t

	Flow Equation Examples

	Time-Dependent Flow
	Iterative Data Structure Definitions
	Base Iterative Data Structure Definition: BaseIterativeData_t
	Zone Iterative Data Structure Definition: ZoneIterativeData_t

	Rigid Grid Motion Structure Definition: RigidGridMotion_t
	Arbitrary Grid Motion Structure Definition: ArbitraryGridMotion_t
	Examples for Time-Dependent Flow

	Miscellaneous Data Structures
	Reference State Structure Definition: ReferenceState_t
	Reference State Example
	Convergence History Structure Definition: ConvergenceHistory_t
	Discrete Data Structure Definition: DiscreteData_t
	Integral Data Structure Definition: IntegralData_t
	Family Data Structure Definition: Family_t
	Geometry Reference Structure Definition: GeometryReference_t
	Family Boundary Condition Structure Definition: FamilyBC_t
	User-Defined Data Structure Definition: UserDefinedData_t
	Gravity Data Structure Definition: Gravity_t

	Annex A.   Conventions for Data-Name Identifiers
	A.1  Coordinate Systems
	A.2  Flowfield Solution
	A.3  Turbulence Model Solution
	A.4  Nondimensional Parameters
	A.5  Characteristics and Riemann Invariants Based on 1-D Flow
	A.6  Forces and Moments
	A.7  Time-Dependent Flow

	Annex B.   Structured Two-Zone Flat Plate Example
	B.1  Overall Layout
	B.2  Grid Coordinates
	B.3  Flowfield Solution
	B.4  Interface Connectivity
	B.5  Boundary Conditions
	B.6  Global Reference State
	B.7  Equation Description


