
CFD General Notation System
http://www.cgns.org

Bruce Wedan

ANSYS/ICEM CFD

Presentation Overview
• What is CGNS ?
• History of CGNS
• CGNS Steering Committee
• ISO-STEP Standard
• HDF5 Interface
• User Base
• CGNS Main Features
• Current Release (Version 2.3)
• Extensions (Version 2.4 beta)
• CGNS Tools
• Detailed Node Descriptions
• Example
• Conclusions

What is CGNS ?
• CFD General Notation System

– Principal target is the data normally associated with compressible
viscous flow (i.e. Navier-Stokes)

– Applicable to computational field physics in general with
augmentation of the data definitions and storage conventions

• Objectives
– Provide a general, portable and extensible standard for the storing

and retrieval of CFD analysis data
– Offer seamless communication of CFD analysis data between sites,

applications and system architectures
– Eliminate the overhead costs due to file translation and multiplicity

of data sets in various formats
– Provide free, open software – GNU Lesser General Public License

What is CGNS ?
• Advanced Data Format (ADF)

– Software that performs the I/O operations
– Directed graph based on a single data structure (the ADF node)
– Defines how data is organized in the storage media.

• Standard Interface Data Structures (SIDS)
– Collection of conventions and definitions that defines the

intellectual content of CFD-related data.
– Independent of the physical file format

• SIDS to ADF Mapping
– Defines how the SIDS is represented in ADF

• CGNS Mid-Level Library (MLL)
– High level Application Programming Interface (API) which

conforms closely to the SIDS
– Built on top of ADF and does not perform any direct I/O operation

History of CGNS
• 1994-1995:

– Series of meetings between Boeing and NASA addressing means
of improving technology transfer from NASA to Industry: The
main impediment to technology transfer is the disparity of file
formats.

• 1995-1998:
– Development of the CGNS System (SIDS, ADF) at Boeing Seattle,

under NASA Contract with participation from:
• Boeing Commercial Aircraft Group, Seattle
• NASA Ames/Langley/Lewis Research Centers
• Boeing St-Louis (former McDonnell Douglas Corporation)
• Arnold Engineering Development Center, for the NPARC Alliance
• Wright-Patterson Air Force Base
• ICEM CFD Engineering Corporation

History of CGNS
• 1997-1998:

– Development of the CGNS Mid-level Library.
– Institution of the CGNS website (http://www.cgns.org)
– first release of the CGNS software and documentation.

• 1999-2001:
– CGNS Steering Committee created as a subcommittee of the AIAA

CFD Committee on Standards
– Version 2.0 of CGNS library released

• Added moving grids and time-dependent data
– ISO-STEP standardization process undertaken by Boeing
– CGNStalk mailing list created at NASA Glenn

History of CGNS
• 2002:

– CGNS becomes a AIAA Recommended Practice
– Version 2.1 of CGNS library released

• Added support for user-defined arrays, chemistry and links

• 2003:
– Source code moved under CVS at SourceForge

(http://sourceforge.net/projects/cgns/)
– Version 2.2 of CGNS library released

• Added axisymmetry, rotating coordinates, connectivity and boundary
condition properties

• 2004:
– HDF5 interface to CGNS released
– Version 2.3 (current stable version) released

• I/O times speed up by an order of magnitude

CGNS Steering Committee
• Public forum made up of international representatives from

government, industry and academia
• Responsibilities

– Maintain the software, documentation and CGNS web site
– Ensure a free distribution of the software and documentation
– Promote the acceptance of the CGNS standard

• Organization
– Meets at a minimum of once a year
– Represented by an elected ChairPerson

• currently Chris Rumsey of NASA Langley
– Governs by consensus
– Welcomes participation of all parties, members or not

CGNS Steering Committee
• Membership – 20 organizations

– NASA Ames – US Air Force / AEDC

– NASA Langley – CD ADAPCO
– NASA Glenn – Intelligent Light
– Boeing Commercial – Pointwise
– Boeing – Rocketdyne – Aerospatiale Matra Airbus
– Boeing Integrated Defense Systems – NUMECA
– Pratt & Whitney – ONERA
– ICEM CFD Engineering – Stanford University
– Fluent, Inc. – Utah State University
– Rolls-Royce Allison – ANSYS CFX

ISO-STEP Standard
• AP 237 – Fluid Dynamics

– Top-level standard which defines the data types and structures used
throughout the field of fluid dynamics

– Need to extend ISO-STEP for binary data (currently ASCII only)
• Part 110 – Computational Fluid Dynamics

– Defines the data types and structures unique to CFD

• Part 52 – Mesh-based Topology
– Defines structured and unstructured grids including topology and

element connectivity

• Part 53 – Numerical Analysis
– Defines links to product data management structures and

configuration control for numerical analysis

ISO-STEP Standard
• Approval process

– A proposal must past 6 stages or “gates” to become a standard.
– Passage through each “gate” requires a specified number of votes

from the 17 P-Member countries. There are CGNS users in each of
these countries.

– Proposals are cancelled after 2 years if progress is not shown
– AP 237 is at “gate” 3 (Committee Draft)
– Parts 110, 52, and 53 are at “gate” 4 (Draft International Std)

• Current status
– Standardization effort is stalled due to lack of funds.
– ISO-STEP has decided to merge AP 237 with AP 209 (finite

element analysis) because there is a high degree of common
content. Effort is being lead by Keith Hunten of Lockheed Martin

HDF5 Interface
• Implementation

– Fully implemented at the ADF level – no change to MLL
• Advantages

– Used in many applications
– Parallel I/O using MPI
– Faster access through linked files

• Disadvantages
– File sizes are 2 to 3 times larger
– I/O times are generally 2 to 3 times slower, but may be up to a

order of magnitude for a large number of nodes
• Current Status

– HDF5 Task Force set up to further evaluate implementation
– Added as option to CGNS with conversion routines

User Base
• Registered Users

– 591 users from more than 25 countries

• CGNStalk (as of May 2003)
– 153 participants from 20 different countries and at least 63

different organizations

• SourceForge (last 2 years)
– Average of 20 page views and 7.5 downloads per day

• Known implementations
– 13 commercial, 9 government, 5 industry, 3 academia

CGNS Main Features
• Hierarchical data structure: quickly traversed and sorted, no need to

process irrelevant data
• Complete and explicit problem description
• Standardized naming conventions
• Unlimited internal documentation, and application specific data
• Layered so that much of the data structures are optional
• ADF database: universal and self describing
• Based on a single data structure called an ADF node
• The data may encompass several files through the use of links
• Portable ANSI C software, with complete Fortran and C interfaces
• Files stored in compact C binary format
• Complete and architecture independent API

Current Release (Version 2.3)
• Grid coordinates and elements

– 1D, 2D and 3D support (physical and cell dimensions)
– Any number of structured and/or unstructured zones
– Cartesian, cylindrical and spherical coordinates systems
– Linear and higher-order elements (22 predefined element types)
– 2D axisymmetry

• Grid connectivities
– 1-to-1 abutting, mismatched abutting, and overset (chimera)
– Connectivity properties (average and periodic interfaces)

• Boundary conditions
– Simple or complex boundary conditions with predefined identifiers
– Any number of Dirichlet or Neumann conditions may be specified

globally or locally on a boundary condition patch
– Boundary patch normals, area and wall function properties

Current Release (Version 2.3)
• Governing flow equations

– General class of flow equations
– Gas, viscosity, thermal conductivity, thermal relaxation, chemistry,

turbulence, and turbulence closure models
• Solutions

– Vertex, cell, face or edge centered with rind (ghost points/cells)
– Any number of solution variables
– Predefined identifiers for solution variables
– Generic discrete data (not typically part of the solution)

• Time-dependent flows
– Time-accurate or non-time-accurate
– Rotating, rigid motion or arbitrary motion grids
– Storage of base and/or zone iterative data

Current Release (Version 2.3)
• Physical data

– Data class: dimensional, normalized, or non-dimensional
– Data conversion factors
– Dimensional units: mass, length, time, temperature and angle
– Dimensional exponents: powers of base units

• Auxiliary data
– Global and/or local convergence history
– Reference state variables
– Gravity and global integral data
– Arbitrary user-defined data
– Textual data for documentation and annotations

Current Release (Version 2.3)
• Families

– Provides a level of indirection to allow mesh to geometry
associations

– Boundary conditions may be applied on families
– Links mesh surfaces to one or more CAD entities

Extensions (Version 2.4 beta)
• Units

– Electric current, amount of a substance, and luminous intensity
added to the base units

• Electromagnetics
– Electric field, magnetic field and electrical conductivity models

added to the governing flow equations
– Voltage, electric and magnetic field strengths, current density,

electrical conductivity, Lorenz force and Joule heating added to list
of solution identifiers

• Families
– Rotating coordinates and complex boundary conditions added to

the family specification

Extensions (Version 2.4 beta)
• Boundary conditions

– Allow for specification of boundary condition data at a location
different than that of the patch specification

• User-defined data
– Allows recursive user-defined data
– Family names and point set specification added

• 1-to-1 connectivities
– Periodic and average interface properties added

• Partial read and write
– Partial read and write for grid coordinates, elements and solution

variable added

CGNS Tools
• ADFviewer

– Views and/or edits
ADF/CGNS files.

– May create, delete or
modify nodes

– Nodes are displayed in a
Windows-like collapsible
tree

– Additional utilities may be
accessed from the menus

– Configurable menus
– Written in Tcl/Tk

CGNS Tools

• CGNSplot
– Viewer for CGNS files
– Displays zones, element

sets, connectivities, and
boundary conditions

– Written in Tcl/Tk with
OpenGL

– Runs standalone, or may
be called from
ADFviewer

CGNS Tools
• File conversion

– Convert Patran, PLOT3D and Tecplot files to CGNS
– Convert CGNS files to PLOT3D and Tecplot

• CGNS file manipulation
– Data conversion utilities for modifying the solution location

(vertex or cell-center), solution variables (primitive or
conservative), and data class (dimensional or normalized)

– Subset extraction and interpolation
• CGNS bindings

– Tcl/Tk interface to ADF and MLL
– PyCGNS: Python interface to ADF and MLL
– ADFM: in memory representation of ADF trees
– CGNS++: C++ interface to ADF and MLL

CGNS Tools
• Other utilities

– CGNScheck: checks CGNS files for valid data and conformance to
the SIDS

– ADFlist: lists ADF/CGNS file tree structure and node data
– ADF_Edit: command-line based interactive browser/editor for

ADF/CGNS files
– CGNS_readhist: reads a CGNS file and writes convergence history

to a formatted file.
– FTU (File Transfer Utility): converts to and from PLOT3D, and

has a text-based menu allowing the manipulation of a CGNS base
– CGNS Viewer: ADF/CGNS file editor/viewer with a GUI using the

GTK+ library

ADF Core

F1 F2

F4 F5

F3

Root

ADF File #2

N3 N4

N1 L1

N5 N6 L2

N2

Root

ADF File #1

ADF Node Content
• ID: A unique identifier to access a node within a file.
• Name: A character field used to name the node. It must be unique for a

given parent.
• Label: A character field used to described the type of information

contained in the node.
• Data type: A character field specifying the type of data (e.g. real,

complex) associated with the node.
• Number of dimensions: The dimensionality of the data.
• Dimensions: An integer vector containing the number of elements

within each dimension.
• Data: The data associated with the node.
• Number of sub-nodes: The number of children directly attached to a

node.
• Name of sub-nodes: The list of children names.

Top Level Structure

CGNSLibraryVersion_t
(CGNS version number)

Axisymmetry_t BaseIterativeData_t
(number of steps)

DataClass_t
(data class)

Descriptor_t
(text)

DimensionalUnit_t
(base units)

Family_t
(family name)

FlowEquationSet_t ConvergenceHistory_t
(number of iterations)

Gravity_t IntegralData_t ReferenceState_t RotatingCoordinates_t

SimulationType_t
(simulation type)

UserDefinedData_t Zone_t
(vertex and cell sizes)

CGNSBase_t
(physical and cell dims)

root node

DataArray_t Node

DataConversion_t
(conversion factors)

DataClass_t
(data class)

Descriptor_t
(text)

DimensionalUnits_t
(units)

DimensionalExponents_t
(exponents)

DataArray_t
(data values)

Family_t Node

Descriptor_t
(text)

Ordinal_t
(ordinal number)

UserDefinedData_t RotatingCoordinates_t

Descriptor_t
(text)

GeometryEntity_t
(name)

GeometryFile_t
(filename)

GeometryFormat_t
(format)

UserDefinedData_t

GeometryReference_t

BCDataSet_t
(bc type simple)

FamilyBC_t
(bc type)

Family_t
(family name)

FlowEquationSet_t Node

ChemicalKineticsModel_t
(model type)

DataClass_t
(data class)

Descriptor_t
(text)

DimensionalUnits_t
(units)

EquationDimension
(dimension)

GasModel_t
(model type)

GoverningEquations_t
(equations type)

ThermalConductivityModel_t
(model type)

ThermalRelaxationModel_t
(model type)

TurbulenceClosure_t
(closure model)

TurbulenceModel_t
(model type)

UserDefinedData_t

ViscosityModel_t
(model type)

EMElectricFieldModel_t
(model type)

EMMagneticFieldModel_t
(model type)

EMConductivityModel_t
(model type)

FlowEquationSet_t

ReferenceState_t Node

DataClass_t
(data class)

Descriptor_t
(text)

DimensionUnits_t
(units)

Descriptor_t
(reference state description)

DataArray_t
(reference state value)

UserDefinedData_t

ReferenceState_t

UserDefinedData_t Node

DataArray_t
(data values)

DataClass_t
(data class)

Descriptor_t
(text)

DimensionUnits_t
(units)

FamilyName_t
(family name)

GridLocation_t
(grid location)

Ordinal_t
(ordinal number)

IndexArray_t
PointList

IndexRange_t
PointRange

UserDefinedData_t

UserDefinedData_t

Zone_t Node

ArbitraryGridMotion_t
(motion type)

DataClass_t
(data class)

Descriptor_t
(text)

DiscreteData_t

DimensionUnits_t
(units)

Elements_t
(element type)

FamilyName_t
(family name)

FlowEquationSet_t

FlowSolution_t GridCoordinates_t IntegralData_t Ordinal_t
(ordinal number)

ReferenceState_t RigidGridMotion_t
(motion type)

RotatingCoordinates_t UserDefinedData_t

ZoneBC_t ConvergenceHistory_t
(number iterations)

ZoneGridConnectivity_t ZoneIterativeData_t

ZoneType_t
(zone type)

Zone_t
(vertex and cell sizes)

Elements_t Node

Descriptor_t
(text)

DataArray_t
ElementConnectivity

IndexRange_t
ElementRange

DataArray_t
ParentData

UserDefinedData_t

Elements_t
(element type)

FlowSolution_t Node

DataClass_t
(data class)

Descriptor_t
(test)

DimensionalUnits_t
(units)

GridLocation_t
(grid location)

Rind_t
(number rind planes)

DataArray_t
(solution data)

UserDefinedData_t

FlowSolution_t

GridCoordinates_t Node

DataArray_t
(grid coordinates)

DataClass_t
(data class)

Descriptor_t
(text)

DimensionalUnits_t
(units)

Rind_t
(number rind planes)

UserDefinedData_t

GridCoordinates_t

ZoneBC_t Node

DataClass_t
(data class)

Descriptor_t
(text)

DimensionalUnits_t
(units)

ReferenceState_t

UserDefinedData_t

BCDataSet_t
(bc type simple)

BCProperty_t DataClass_t
(data class)

Descriptor_t
(text)

DimensionalUnits_t
(units)

IndexArray_t
ElementList

IndexRange_t
ElementRange

FamilyName_t
(family name)

GridLocation_t
(location)

InwardNormalIndex
(index of normal)

InwardNormalList
(normal vectors)

Ordinal_t
(ordinal number)

IndexArray_t
PointList

IndexRange_t
PointRange

ReferenceState_t UserDefinedData_t

BC_t
(BC type)

ZoneBC_t

BCDataSet_t Node

DataClass_t
(data class)

Descriptor_t
(text)

DimensionalUnits_t
(units)

GridLocation_t
(location)

IndexArray_t
PointList

IndexRange_t
PointRange

ReferenceState_t UserDefinedData_t

BCData_t
DirichletData

DataArray_t
(data)

DataClass_t
(data class)

Descriptor_t
(text)

DimensionalUnits_t
(units)

UserDefinedData_t

BCData_t
NeumannData

BCDataSet_t
(bc type simple)

ZoneGridConnectivity_t Node

Descriptor_t
(text)

GridConnectivity_t
(donor zone name)

GridConnectivity1to1_t
(donor zone name)

OversetHoles_t

UserDefinedData_t

ZoneGridConnectivity_t

GridConnectivity_t Node

IndexArray_t
CellListDonor

Descriptor_t
(text)

GridConnectivityProperty_t GridConnectivityType_t
(connectivity type)

GridLocation_t
(location)

DataArray_t
InterpolantsDonor

Ordinal_t
(ordinal number)

IndexArray_t
PointList

IndexArray_t
PointListDonor

IndexRange_t
PointRange

UserDefinedData_t

GridConnectivity_t
(donor zone name)

GridConnectivity1to1_t Node

Descriptor_t
(text)

GridConnectivityProperty_t

Ordinal_t
(ordinal number)

IndexRange_t
PointRange

IndexRange_t
PointRangeDonor

Transform
(connectivity transform)

UserDefinedData_t

GridConnectivity1to1_t
(donor zone name)

OversetHoles_t Node

Descriptor_t
(text)

GridLocation_t
(location)

IndexArray_t
PointList

IndexRange_t
PointRange

UserDefinedData_t

OversetHoles_t

Example
• Structured cylinder attached to unstructured cube

Example - Code
unlink("example.cgns");

cg_open("example.cgns", MODE_WRITE, &cgfile);

cg_base_write(cgfile, "Mismatched", CellDim, PhyDim,
&cgbase);

cg_goto(cgfile, cgbase, "end");

cg_descriptor_write("Descriptor", "Mismatched Grid");

cg_dataclass_write(Dimensional);

cg_units_write(Kilogram, Meter, Second, Kelvin,
Radian);

/*----- zone 1 is unstructured cube -----*/

cg_zone_write(cgfile, cgbase, "UnstructuredZone",

size, Unstructured, &cgzone);

/* write coordinates */

cg_coord_write(cgfile, cgbase, cgzone, RealSingle,
"CoordinateX", xcoord, &cgcoord);

cg_coord_write(cgfile, cgbase, cgzone, RealSingle,
"CoordinateY", ycoord, &cgcoord);

cg_coord_write(cgfile, cgbase, cgzone, RealSingle,
"CoordinateZ", zcoord, &cgcoord);

/* write elements and faces */

cg_section_write(cgfile, cgbase, cgzone, "Elements",
HEXA_8, 1, num_element, 0, elements, &cgsect);

cg_section_write(cgfile, cgbase, cgzone, "Faces",
QUAD_4, num_element+1, num_element+num_face, 0,
faces, &cgsect);

cg_parent_data_write(cgfile, cgbase, cgzone, cgsect,
parent);

/* write inflow and wall BCs */

cg_boco_write(cgfile, cgbase, cgzone, "Inlet",
BCInflow, ElementRange, 2, range, &cgbc);

cg_boco_write(cgfile, cgbase, cgzone, "Walls", BCWall,
PointList, n, pts, &cgbc);

/*----- zone 2 is structured cylinder -----*/

cg_zone_write(cgfile, cgbase, "StructuredZone", size,
Structured, &cgzone);

/* write coordinates */

cg_coord_write(cgfile, cgbase, cgzone, RealSingle,
"CoordinateR", xcoord, &cgcoord);

cg_coord_write(cgfile, cgbase, cgzone, RealSingle,
"CoordinateTheta", ycoord, &cgcoord);

cg_coord_write(cgfile, cgbase, cgzone, RealSingle,
"CoordinateZ", zcoord, &cgcoord);

/* write outlet and wall BCs */

cg_boco_write(cgfile, cgbase, cgzone, "Outlet",
BCOutflow, PointRange, 2, range, &cgbc);

cg_boco_write(cgfile, cgbase, cgzone, "Walls", BCWall,
PointList, n/3, pts, &cgbc);

/* periodic 1to1 connectivity */

cg_1to1_write(cgfile, cgbase, 2, "Periodic",
"StructuredZone", range, d_range, transform,
&cgconn);

/*----- zone 1 -> zone 2 connectivity -----*/

cg_conn_write(cgfile, cgbase, 1, "Unstructured ->
Structured", Vertex, Abutting, PointRange, 2, pts,
"StructuredZone", Structured, CellListDonor,
Integer, n/3, d_pts, &cgconn);

cg_goto(cgfile, cgbase, "Zone_t", 1,
"ZoneGridConnectivity_t", 1,
"GridConnectivity_t", cgconn, "end");

cg_array_write("InterpolantsDonor", RealSingle, 2, dims,
interp);

/*----- zone 2 -> zone 1 connectivity similar -----*/

/* close file */
cg_close(cgfile);

Example - Node Tree
ADF MotherNode
+-CGNSLibraryVersion
+-Mismatched
+-Descriptor
+-DataClass
+-DimensionalUnits
+-UnstructuredZone
| +-ZoneType
| +-GridCoordinates
| | +-CoordinateX
| | +-CoordinateY
| | +-CoordinateZ
| +-Elements
| | +-ElementRange
| | +-ElementConnectivity
| +-Faces
| | +-ElementRange
| | +-ElementConnectivity
| | +-ParentData
| +-ZoneBC
| | +-Inlet
| | | +-ElementRange
| | +-Walls
| | +-PointList
| +-ZoneGridConnectivity
| +-Unstructured -> Structured
| +-GridConnectivityType
| +-PointRange
| +-CellListDonor
| +-InterpolantsDonor

+-StructuredZone
+-ZoneType

+-GridCoordinates
| +-CoordinateR
| +-CoordinateTheta

| +-CoordinateZ
+-ZoneGridConnectivity

| +-Periodic
| | +-Transform
| | +-PointRange

| | +-PointRangeDonor
| +-Structured -> Unstructured

| +-GridConnectivityType
| +-PointList
| +-CellListDonor

| +-InterpolantsDonor
+-ZoneBC

+-Outlet
| +-PointRange
+-Walls

+-PointList

Conclusions
• Why should I use CGNS ?

– CGNS is a well-established, stable format with world-wide
acceptance, use and support

– Provides seamless communication of data between applications,
sites, and system architectures

– Supported by most commercial visualization and CFD vendors
– Extensible and flexible – easily adapted to other fields of

computational physics through specification in the SIDS
– Backwards compatible with previous versions – forwards

compatible within the major release number
– Allows new software development to focus on functionality and

reliability rather than data I/O, storage and compatibility
• Want more information ?

– http://www.cgns.org

