Marc Poinot
Computational Fliud Dynamics and Aeroacoustics Dept.
ONERA
France
['Transform',(1, 2, 3),[],'int[IndexDimension]'], ['PointRange',((1, 1, 1), (1, 9, 9)),[],'IndexRange_t'], ['PointRangeDonor',((21, 1, 1), (21, 9, 9)),[],'IndexRange_t']
import CGNS import numarray as N x=y=z=N.zeros((3,5,7),'d') a=CGNS.pyCGNS("newfile.cgns",CGNS.MODE_WRITE) print a.error idb=a.basewrite("Base",3,3) idz=a.zonewrite(idb,"Zone 01",[3,5,7],CGNS.Structured) a.coordwrite(idb,idz,CGNS.RealDouble,CGNS.CoordinateX,x) a.coordwrite(idb,idz,CGNS.RealDouble,CGNS.CoordinateY,y) a.coordwrite(idb,idz,CGNS.RealDouble,CGNS.CoordinateZ,z) a.close()
import CGNS f=CGNS.pyCGNS("hydro-result.cgns",CGNS.MODE_WRITE) f.basewrite("MASS2",3,3) f.zonewrite(1,"Block01",(2,3,4,1,2,3,0,0,0),CGNS.Structured) f.solwrite(1,1,"07-01-1944 06:00:00",CGNS.CellCenter) f.fieldwrite(1,1,1,CGNS.RealDouble,"sediment",w) f.goto(1,[(CGNS.Zone_t,1),(CGNS.FlowSolution_t,1),(CGNS.DataArray_t,1)]) f.descriptorwrite("Description","Text here") f.descriptorwrite("Units","Text here") f.close()
from CGNS import * a=pyCGNS("result-001.cgns",MODE_MODIFY) a.goto(1,[(Zone_t,1)]) a.linkwrite("GridCoordinates","grid.cgns","/Base/Zone/GridCoordinates") a.close()
import MpCCI pathB="/FlatPlate/Fluid/ZoneBC/Wall:Heat/DataSet#01/NeumannData" pathI=pathB+"/Temperature" pathO=pathB+"/NormalHeatFlux" it=E.iteration() fqx=mcci.Parameter_info("Simulation_Fluid_2_Therm_Ratio",MpCCI.CCI_INT) xp=xw.get(E.RUNTIME_TREE) xf=X.retrieve(pathO,xp) if ( xf and ((it % fqx ) == 0 )): sd1=mcci.Parameter_info("Fluid_Private_Synchro_ID",MpCCI.CCI_INT) ZID=mcci.Parameter_info("Global_Mesh_ID",MpCCI.CCI_INT) BID=1 nnodes=len(xf[1].flat) if ( (it % fqx ) == 0 ): mcci.Put_nodes(ZID,BID,171,1,nnodes,0,None,MpCCI.CCI_DOUBLE,xf) mcci.Reach_sync_point(sd1) (rC,nC)=mcci.Get_nodes(ZoneID,BoundaryID,154,1,nnodes,0,None,MpCCI.CCI_DOUBLE) ... E.update((E.RUNTIME_TREE,rt)
import elsApy as E from Scientific import MPI communicator=MPI.world.duplicate() id = communicator.rank if ( id == 0 ): remoteId=1 elif ( id == 1 ): remoteId=0 datatree=E.get(E.RUNTIME_TREE) temp=pickle.dumps(datatree) communicator.nonblocking_send(temp, remoteId, id) return,rank,tag=communicator.receiveString(None,None) result=pickle.loads(return) for l in result: if (l[0] == "RunTimeTree"): for ll in l[2]: if (ll[0] == "Rotor#Output"): ll[0]="Stator#Input" if (ll[0] == "Stator#Output"): ll[0]="Rotor#Input" E.update(E.RUNTIME_TREE,result)
T=CGNSTree() base=newBase(T,"Base",3,3) print T getChildrenNameByPath(T,"/Base/Zone-002/GridCoordinates")
[['CGNSLibraryVersion', 2.4, [], 'CGNSLibraryVersion_t'], ['Base', array([3, 3]), [], 'CGNSBase_t'] ]
T=C.newCGNS() base=C.newBase(T,"Base",3,3) size=(20,10,5) z1=C.newZone(base,"Zone-001",size) C.newCoordinates(z1,"CoordinatesX",x) C.newCoordinates(z1,"CoordinatesY",y) f=open("T01.py","w+") f.write(str(T)) f.close() clist=C.getChildrenNameByPath(T,"/Base/Zone-002/GridCoordinates") for c in clist: n=C.getByExactPath(T,"/Base/Zone-002/GridCoordinates/"+c) print C.nodeName(n) v=C.nodeValue(n) print C.getChildrenType(T,"CGNSBase_t") print C.getAllTreePath(T) print C.getAllTreeType(T,"Zone_t") print C.getAllTreeType(T,"DataArray_t")