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Agenda
• 7:00-7:30 Introduction, overview, and basic usage

C. Rumsey (NASA Langley)
• 7:30-7:50 Usage for structured grids

B. Wedan (ANSYS – ICEM)
• 7:50-8:10 Usage for unstructured grids

E. van der Weide (Stanford University)
• 8:20-8:40 HDF5 usage and parallel implementation

T. Hauser (Utah State University)
• 8:40-9:00 Python and in-memory CGNS trees

M. Poinot (ONERA)
• 9:00-9:30 Discussion and question/answer period



CFD General Notation System (CGNS)
Introduction, overview, and basic usage

Christopher L. Rumsey
NASA Langley Research Center

Chair, CGNS Steering Committee
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Outline
• Introduction 
• Overview of CGNS

– What it is
– History
– How it works, and how it can help
– The future

• Basic usage
– Getting it and making it work for you
– Simple example
– Aspects for data longevity
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Introduction

• CGNS provides a general, portable, and 
extensible standard for the storage and 
retrieval of CFD analysis data

• Principal target is data normally associated 
with computed solutions of the Navier-Stokes 
equations & its derivatives

• But applicable to computational field physics 
in general (with augmentation of data 
definitions and storage conventions)
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What is CGNS?
• Standard for defining & storing CFD data

– Self-descriptive
– Machine-independent
– Very general and extendable
– Administered by international steering committee

• AIAA recommended practice (AIAA R-101-2002)
• In process of becoming part of international ISO 

standard
• Free and open software
• Well-documented
• Discussion forum: cgnstalk@lists.nasa.gov
• Website: http://www.cgns.org
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History

• CGNS was started in the mid-1990s as a joint effort 
between NASA, Boeing, and McDonnell Douglas
– Under NASA’s Advanced Subsonic Technology (AST) 

program
• Arose from need for common CFD data format for 

improved collaborative analyses between multiple 
organizations
– Existing formats, such as PLOT3D, were incomplete, 

cumbersome to share between different platforms, and not 
self-descriptive (poor for archival purposes)

• Initial development was heavily influenced by 
McDonnell Douglas’ “Common File Format”, which 
had been in use since 1989

• Version 1.0 of CGNS released in May 1998
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History, cont’d

• After AST funding ended in 1999, CGNS steering 
committee was formed
– Voluntary public forum
– International members from government, industry, academia
– Formally became a sub-committee of AIAA Committee on 

Standards in 2000
• Initial efforts by Boeing to make CGNS an 

international ISO-STEP standard (1999-2002) 
– Stalled due to lack of funding
– Instead, the existing ISO standard AP209 (finite element 

solid mechanics) is being rewritten (AP209E2) to include 
CGNS as well as an integrated engineering analysis 
framework (headed by Lockheed-Martin)
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Steering committee

• CGNS Steering committee is a public forum
• Responsibilities include (1) maintaining software, 

documentation, and website, (2) ensuring free 
distribution, and (3) promoting acceptance

• Current steering committee make-up (20 members):
ADAPCO

ANSYS-CFX

Aerospatiale Matra Airbus

Boeing – IDS/PW

Boeing Commercial

Boeing IDS

Fluent

ANSYS-ICEM

Intelligent Light

NASA Glenn

NASA Langley

ONERA

Pacific NW Laboratory

Pointwise

Pratt & Whitney

Pratt & Whitney – Rocketdyne

Rolls-Royce Allison

Stanford University

U.S. Air Force / AEDC

Utah State University
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CGNS main features
• Hierarchical data structure : quickly traversed and 

sorted, no need to process irrelevant data
• Files stored in compact C binary format
• Layered so that many of the data structures are 

optional
• ADF or HDF5 database: universal and self-describing
• Data may encompass multiple files through the use 

of links
• Portable ANSI C software, with complete Fortran and 

C interfaces
• Architecture-independent application programming 

interface (API) – written as a mid-level library (MLL)
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CGNS File Layout
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Makeup of CGNS
• Standard Interface Data Structures (SIDS) is the core of CGNS –

defines the intellectual content
– Defines what goes in the “boxes” and how they are organized

• Original low level implementation is Advanced Data Format (ADF)
– Basic direct I/O operations
– Software has no knowledge of data structure or contents
– Tree-based (nodal parent/child) structure

• Low level implementation is migrating toward HDF5 format
– HDF5 is already available as an option
– HDF5 is well-supported (NCSA) , widely used, and has parallel I/O 

capability
– This will be the official recommended format, although ADF will also 

continue to be supported, and MLL will translate between the two
• Mid-level library (MLL) is currently available for C and Fortran

– This is what most users employ
– Software has some knowledge of SIDS
– C++ and Python extensions also available
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How CGNS works

• Users must download the CGNS software
– This includes ADF software (basic I/O operations in binary 

format)
– Also includes MLL software (for ease of implementation)
– Users wishing to use HDF5 instead of ADF must download 

this separately (MLL will work with either ADF or HDF5)
• Users are encouraged to use the MLL to read and 

write their data (helps ensure CGNS-compatibility)
• Files are portable across computer platforms
• Tools (such as adfviewer) allow user to “see” what is 

in the CGNS file
• Many commercial pre- and post-processing software 

support CGNS format
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Typical view of CGNS file using 
ADFVIEWER
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Typical CGNS file

Root node

CGNSBase_tCGNSLibraryVersion_t

Zone 1 Zone 2 ConvergenceHistory_t ReferenceState_t

GridCoordinates_tElements_t FlowSolution_t ZoneGridConnectivity_t

Zone_t Zone_t

ElementConnectivity CoordinateY

DataArray_t DataArray_t

GridLocation Density Pressure

GridLocation_t DataArray_t DataArray_t

ZoneBC_t

CoordinateX

DataArray_t
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Cons and Pros
• Cons

– Although there are rules, there are also many options and a 
certain amount of freedom

• Example:  GridLocation = Vertex vs. CellCenter
• Example:  data can be stored dimensional or nondimensional
• Example:  optional use of Rind cells

– This flexibility places more responsibility on the CGNS 
reader to figure out how to make use of what is in the file

– Attempted balance between too rigid and too flexible
• Pros

– As more people use it, more tools get developed to handle 
the flexibility

– Can be as simple as storing only “grid + flow solution”, or as 
complex as storing everything needed to run/describe a case

– Longevity and infinite extensibility
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How CGNS can help you
• Improves longevity (archival quality) of data

– Self-descriptive (more on this later)
– Machine-independent

• Easy to share data files between sites
– Eliminates need to translate between different data formats
– Rigorous standard means less ambiguity about what the data 

means
• Saves time and money

– For example, easy to set-up CFD runs because files include 
grid coordinates, connectivity, and BC information

• Easily extendible to include additional types of data
– Solver-specific or user-specific data can easily be written & 

read – file remains CGNS-compliant (others can still read it!)
– Once defined & agreed upon, new data standards can be 

added 
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Status/where CGNS is headed
• Latest version is 2.4
• As of Aug 2005, the CGNSTalk mailing list had 161 participants 

from 21 different countries and at least 80 different organizations
• Over 11,000 CGNS downloads from SourceForge over last 3 

years (average of 408 per month over last 1 year)
• Many people have expressed interest in CGNS from outside of 

the traditional aerodynamics community
– E.g., computational physiology, electromagnetics

• Parallel I/O (through HDF5) will be available soon
• CGNS is already in many widely-used commercial visualization 

products, e.g., Tecplot, Fieldview, ICEM-CFD (reader for 
Paraview being worked)

• Continuous process: approval and implementation of extensions 
for handling new capabilities
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Getting CGNS

• Go to http://www.cgns.org and follow instructions
– Or go directly to http://www.SourceForge.net
– You can get the official released version (currently 2.4), or 

use CVS to keep up with the latest fixes
– E.g.: cgnslib_2.4-4.tar.gz (or cgnslib_2.4-4.zip for Windows)
– Follow instructions in README file to compile

• Also highly recommended (from same place):
– cgnstools (tools for viewing/editing)
– CGNS Users Guide (practical entry-level manual for getting 

started with CGNS – includes simple source codes)
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Basics of using CGNS
• Simple example: opening, closing, writing, & 

reading Base
• Aspects for data longevity

– Boundary conditions
– Convergence history
– Descriptor nodes
– Data & equation descriptions
– Flowfield variables
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Opening/closing file & writing Base
• C

cg_open(“grid.cgns”, MODE_WRITE, &indexf);
basename=“Base”;
icelldim=3;  /* dimensionality of cell (3 for volume cell) */
iphysdim=3;  /* number of coordinates (3 for 3-D) */
cg_base_write(indexf, basename, icelldim, iphysdim, &indexb);

……..
cg_close(indexf);

• Fortran
call cg_open_f(‘grid.cgns’, MODE_WRITE, indexf, ier)
basename=‘Base’
icelldim=3
iphysdim=3
call cg_base_write_f(indexf, basename, icelldim, iphysdim, indexb, ier)

……..
call cg_close_f(indexf, ierr)
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What the file looks like…

Root node

Name = Base
Label = CGNSBase_t
Data = 3, 3

Name = CGNSLibraryVersion
Label = CGNSLibraryVersion_t
Data = 2.4

automatic

automatic automatic

user-defined

Notes:  icelldim = dimensionality of cell (2 for face, 3 for volume)
iphysdim = no. of coordinates required to define a node

position (1 for 1-D, 2 for 2-D, 3 for 3-D)
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What the file looks like in adfviewer…



24

Reading the Base

• C
cg_open(“grid.cgns”, MODE_READ, &indexf);
cg_nbases(indexf, &nbases);
for (i=1; i <= nbases; i++)

{cg_base_read(indexf, i, basename, &icelldim, &iphysdim);}
cg_close(indexf);

• Fortran
call cg_open_f(‘grid.cgns’, MODE_READ, indexf, ier)
call cg_nbases_f(indexf, nbases, ier)
do i=1,nbases

call cg_base_read_f(indexf, i, basename, icelldim, iphysdim, ier)
enddo
call cg_close_f(indexf, ier)
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Aspects for data longevity
boundary conditions

• BCs are included in the CGNS file
• Including BCs makes it easier for someone 

else to duplicate the same flow conditions
• Eliminates doubt as to how the solution was 

run, when later looking at the file
• BCs can be simple or have high level of detail

– Minimum: list of points and their BC type (name)
– Can also include Dirichlet or Neumann-type data
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Aspects for data longevity
convergence history

• GlobalConvergenceHistory tracks history of 
residual(s), forces, moments, etc.

• Part of a complete record of the flow solution, 
easily readable by others
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Aspects for data longevity
descriptor nodes

• Allow user to add notes, descriptions, 
important factors associated with the 
particular run, etc.

• As part of the permanent record, descriptor 
nodes make the file potentially more 
useful/meaningful in the future

• Full inclusion of flow solver input deck(s) is 
particularly useful

• Eliminates doubt as to how the solution was 
run, when later looking at the file
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Aspects for data longevity
data & equation descriptions

• Documents the dimensionality & units (or 
normalization) of the data

• Reference state and flow solution method 
become part of permanent record

• Eliminates doubt as to what the variables 
represent and how the solution was run, 
when later looking at the file
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Aspects for data longevity
flowfield variables

• As many flowfield variables as desired can be 
stored; for example:
– Conserved and/or primitive variables
– Plus all turbulence quantities, eddy viscosity, 

distance functions, species mass fractions, or 
other flowfield quantities of interest

• Eliminates having to go back and restart or 
reconstruct when you want to obtain non-
standard quantities
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Some final comments
• A CGNS file can be as full or as sparse as 

you want to make it
– The fuller it is, the more complete and archival the 

file
– Always easy to read only the parts you want

• Easy to build CGNS into existing processes
– Start by writing only the “basic” elements of CGNS 

file (e.g., grid, flow solution, connectivity, and BCs) 
as a postprocessing file for flow visualization

– Gradually add to completeness of file
– Eventually, CGNS file can replace your restart file, 

if desired
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Conclusions
• CGNS is a well-established, stable format with world-

wide acceptance, use, and support
• Provides seamless communication of data between 

applications, sites, and system architectures
• Supported by many commercial visualization and 

CFD vendors
• Extensible and flexible – easily adapted to other fields 

of computational physics through specification in the 
SIDS

• Backward compatible with previous versions; forward 
compatible within major release numbers

• Allows new software development to focus on 
important matters, rather than on time-consuming 
data I/O, storage, and compatibility issues
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Conclusions, cont’d

• CGNS is the best thing since sliced bread!



Auxiliary slides
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Writing structured grids
double x[kdim][kdim][idim], y[kdim][jdim][idim], z[kdim][jdim][idim];
int isize[3][3];
strcpy(zonename,”Zone 1”);
/* vertex size (structured grid example) */
isize[0][0]=idim;
isize[0][1]=jdim;
isize[0][2]=kdim;
/* cell size (structured grid example) */
isize[1][0]=isize[0][0]-1;
isize[1][1]=isize[0][1]-1;
isize[1][2]=isize[0][2]-1;
/* boundary vertex size (always zero for structured) */
isize[2][0]=0;
isize[2][1]=0;
isize[2][2]=0;
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Writing structured grids (cont’d)
/* create zone */
cg_zone_write(indexf, indexb, zonename, isize[0], Structured, &indexz);
/* write grid coordinates */
cg_coord_write(indexf, indexb, indexz, RealDouble, “CoordinateX”, x, 

&indexcx);
cg_coord_write(indexf, indexb, indexz, RealDouble, “CoordinateY”, y, 

&indexcy);
cg_coord_write(indexf, indexb, indexz, RealDouble, “CoordinateZ”, z, 

&indexcz);
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What the file looks like…
Root node

Name = Zone 1
Label = Zone_t
Data = (idim,jdim,kdim),

(idim-1,jdim-1,kdim-1), (0,0,0)

Name = CGNSLibraryVersion
Label = CGNSLibraryVersion_t
Data = 2.4

Name = Base
Label = CGNSBase_t
Data = 3, 3

Name = ZoneType
Label = ZoneType_t
Data = "Structured"

Name = GridCoordinates
Label = GridCoordinates_t
Data = MT

Name = CoordinateX
Label = DataArray_t
Data = all the x-coordinates
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What the file looks like in adfviewer…
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Writing unstructured grids
/* this is an example for HEXA_8 (cube-like) elements
double x[maxnodes], y[maxnodes], z[maxnodes];
int isize[3], ielem[maxelem][8];
strcpy(zonename,”Zone 1”);
/* vertex size (unstructured grid example) */
isize[0]=inodedim;
/* cell size (unstructured grid example) */
isize[1]=icelldim;
/* boundary vertex size (zero if elements not sorted) */
isize[2]=ivbdy;
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Writing unstructured grids (cont’d)
/* create zone */
cg_zone_write(indexf, indexb, zonename, isize, Unstructured, &indexz);
/* write grid coordinates */
cg_coord_write(indexf, indexb, indexz, RealDouble, “CoordinateX”, x, 

&indexcx);
cg_coord_write(indexf, indexb, indexz, RealDouble, “CoordinateY”, y, 

&indexcy);
cg_coord_write(indexf, indexb, indexz, RealDouble, “CoordinateZ”, z, 

&indexcz);
/* write element connectivity */
cg_section_write(indexf, indexb, indexz, “Elem”, HEXA_8, nelem_start, 

nelem_end, nbdyelem, ielem[0], &indexe);
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Element connectivity for HEXA_8

1

23

4

5

67

8
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What the file looks like… (below Base)

Name = Zone 1
Label = Zone_t
Data = inodedim, icelldim, ivbdy

Name = Elem
Label = Elements_t
Data = 17, 0

Name = GridCoordinates
Label = GridCoordinates_t
Data = MT

Name = CoordinateX
Label = DataArray_t
Data = all the x-coordinates

Name = ElementConnectivity
Label = DataArray_t
Data = all connectivity info

Name = ZoneType
Label = ZoneType_t
Data = "Unstructured"

Name = ElementRange
Label = IndexRange_t
Data = 1,number_of_elements

(17 represents ElementType
HEXA_8, 0 represents
boundary element size)
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What the file looks like in adfviewer…


