43rd AIAA Aerospace Sciences Meeting and Exhibit, 10 - 13 Jan 2005, Reno, Nevada

Benchmarking Parallel I/0O Performance for
Computational Fluid Dynamics Applications

Parimala D. Pakalapati* Thomas Hauser! Utah State University, Logan, Utah, 84322, USA

I. Introduction

Linux clusters can provide a viable and more cost effective alternative to conventional supercomputers
for the purposes of computational fluid dynamics (CFD). In some cases, the Linux super cluster is replacing
the conventional supercomputer as a large-scale, shared-use machine. In other cases, smaller clusters are
providing dedicated platforms for CFD computations. One important, often overlooked, issue for large,
three dimensional time-dependent simulations is the input and output performance of the CFD solver.
The development of the CFD General Notation System (CGNS) (see'**”) has brought a standardized and
robust data format to the CFD community, enabling the exchange of information between the various stages
of numerical simulations. This paper presents benchmarks results of the parallel I/O performance of a
proposed parallel CGNS extension.

II. The parallel CGNS system

The specific purpose of the CFD General Notation System (CGNS) project is to provide a standard
for recording and recovering computer data associated with the numerical solution of the equations of fluid
dynamics. The intent is to facilitate the exchange of Computational Fluid Dynamics (CFD) data between
sites, between applications codes, and across computing platforms, and to stabilize the archiving of CFD
data.

The CGNS system consists of two parts: (1) the Standard Interface Data Structures, SIDS and (2) the
ADF library. The ”Standard Interface Data Structures” specification constitutes the essence of the CGNS
system. While the other elements of the system deal with software implementation issues, the SIDS speci-
fication concerns itself with defining the substance of CGNS. It precisely defines the intellectual content of
CFD-related data, including the organizational structure supporting such data and the conventions adopted
to standardize the data exchange process. The SIDS are designed to support all types of information in-
volved in CFD analysis. While the initial target was to establish a standard for 3D structured multi-block
compressible Navier-Stokes analysis, the SIDS extensible framework now includes unstructured analysis,
configurations, hybrid topology and geometry-to-mesh association. Although the SIDS specification is inde-
pendent of the physical file formats, its design was targeted towards implementation using the ADF Core
library. The ” Advanced Data Format” (ADF) is a concept defining how the data is organized in the stor-
age media. It is based on a single data structure called an ADF node,designed to store any type of data.
Each ADF file is composed of at least one node called the "root”. The ADF nodes follow a hierarchical
arrangement from the root node down.

In our implementation we used the new HDF5 layer This made the implementation of parallel I/O much
easier and still maintains the portability with the CGNS standard since the information about the CFD data
is described by the SIDS structure.

Our approach introduces a new API with parallel access semantics and optimized parallel I/O imple-
mentation such that all processes perform I/O operations cooperatively or collectively through the parallel

*Graduate Student, Department of Computer Science, Utah State University, 4205 Old Main Hill, Logan, UT, 84322
T Assistant Professor, Mechanical & Aerospace Engineering, Utah State University, 4130 Old Main Hill, Logan, UT, 84322,
ATAA member.
Copyright (© 2005 by Thomas Hauser, Utah State University. Published by the American Institute of Aeronautics and
Astronautics, Inc. with permission.

1of 8

American Institute of Aeronautics and Astronautics Paper 2005-1381

CGNS library to access a single CGNS file. This approach, as shown in Figure 1, both frees the users
from dealing with details of parallel I/O and provides more opportunities for employing various parallel I/O
optimizations in order to obtain higher performance.

FO0 POL P02 P03 P04

Parallel File System

Figure 1. Data access using parallel CGNS API based on HDF5 and MPI-I/O

To facilitate convenient and high-performance parallel access to CGNS files, we define a new parallel
interface and provide a prototype implementation. Since a large number of existing users are running their
applications over CGNS, our parallel CGNS design retains the original SIDS APT and introduces extensions
which are minimal changes from the original API. The parallel API is distinguished from the original serial
API by prefixing the C function calls with “cgp_” instead of “cg_” as in the standard SIDS API.

A. Parallel HDF5

In parallel HDF5 a parallel file is opened with a communicator argument and an access template set for MPI
parallel access. It returns a file handle which can be used for future access to the file. All processes of the
communicator are required to participate in the collective HDF5 API. Here is a list of the collective HDF5
operations:

e File open H5FCreate or H5Fopen)

Dataset open (H5Dcreate or H5Dopen)

Dataset close (H5Dclose)
e File close (H5Fclose)

e Changes to dataset attributes

Data set access can be collective or independent. In our CGNS implementation we use the independent
access mode to a collectively opened data sets. This allows the grid blocks on different processor to write
their data sets independently in parallel to the file.

B. Parallel Implementation

Several calls were added for the parallel implementation. The most important change is the breakup of the
writing of data arrays into two steps. In the serial implementation “GridCoordinates” are written in one
function all “cg_coord_write”. Since creating structural nodes in HDF5 and therefor CGNS require collective
operations, an additional step “cgp_coord_create” which has the same syntax as the serial write but does
not write any data and returns a coordinate index number. The only difference is that an empty data set

2 of 8

American Institute of Aeronautics and Astronautics Paper 2005-1381

is created collectively. This data set is then filled with the actual data using another call “cgp_coord_write”
using the coordinate index number from the creation subroutine call. This write is done independently for
each processor and therefor allows for independent parallel 1/0.

ITII. Performance Benchmarks

The number and variety of Linux clusters in use for computational science and engineering is increasing
daily, such that it is now difficult to cover the complete design field in a single paper. However, we are
uniquely positioned to run simulations on both shared-user superclusters and on a sizable variety of smaller-
scale cluster designs. Since we are mainly interested in I/O performance we focus on two different file
systems: NFS and PVFS2.

A. FAUST - a low cost Beowulf Cluster

Fluid Athlon Utah State Testbed (FAUST) is a cluster of 64 (plus 2 “hot spare”) AMD 2200+ Athlon XP
(figure 2). Each PC contains 256MB of main memory and four 100Mb/s Fast Ethernet interfaces. Nine
(plus one spare) 32-way Ethernet switches are used in a Flat Neighborhood topology™° to interconnect the
machines with low latency and high bandwidth. In addition a fat tree network consisting of one layer of
MBit switches and a top level GBit switch is used for administrative and I/O network traffic

Figure 2. Fluid Athlon Utah State Testbed (FAUST)

B. Network File System

NFS works on a client-server model. One computer is the server and offers file systems to other systems.
The clients can mount server exports in a manner almost identical to that used to mount local file systems.

3of 8

American Institute of Aeronautics and Astronautics Paper 2005-1381

NFS can be tuned using different NSF data transfer buffer sizes. In our case we used the standard Linux
Mandrake 10.1 settings.

C. Parallel Virtual File System 2

One area in which commercial parallel machines have always maintained great advantage, however, is that
of parallel file systems. A production-quality high-performance parallel file system has not been available
for Linux clusters, and without such a file system, Linux clusters cannot be used for large I/O-intensive
parallel applications. The Parallel Virtual File System (PVFS),’ is a parallel file system that can provide
high-performance I/O for Linux clusters.

As a parallel file system, the primary goal of PVFS is to provide high-speed access to file data for parallel
applications. In addition, PVFS provides a cluster wide consistent name space, enables user-controlled
striping of data across disks on different I/O nodes, and allows existing binaries to operate on PVFS files
without the need for recompiling.

PVFS2° is the second generation file system from the Parallel Virtual File System project team. It
improves on the design of the original PVFS' to provide parallel and aggregated I/O performance for Linux
clusters. It employs a client/server architecture, both the server and client side libraries can reside completely
in user space. A file is striped across a number of file servers and the clients communicate with the servers
for access to file data. In our configuration meta data accesses is done through the main cluster server. The
individual file servers on the nodes use the native file system of the node. Our nodes are configured to be
disk less, but since they contain disk space it is used for parallel I/O and scratch storage. More information
about PVFS2 can be found in.

On FAUST all compute nodes are I/O servers and clients. The master node is running the manager
daemon and is also a client of the parallel file system. The PVFS is used as a temporary file system for
applications with parallel I/O enabled and large 1/0O needs.

IV. Performance Results

A. Read Performance

The following scaling results were obtained on the Linux cluster FAUST. It is configured with a scratch file
system spanning all compute nodes consisting of PVFS2. A single block data set has been chosen to perform
the I/O test. Data sizes of 643 (8.2 MB), 1282 (57 MB) and 2562 (417 MB) were used to obtain the wall
clock time and speedups. In Figures 3 and 4 the wall clock time for parallel CGNS I/O is presented. For
one node performance measurements the serial CGNS I/0 using the HDF5 layer is used. All data sets show
a improvement in read performance except for 8 processors.

) & 8.2 MB dataset
- ‘ &—o 57 MB dataset -

walltime [s]

10 20 30 40 50 60
number of processors

Figure 3. Wall time for parallel CGNS I/O using PVFS for the 8.2 and 57 MB data sets

Figure 5 shows the speedup for reading several data sets. Initially the speedup is increasing as expected,

4 of 8

American Institute of Aeronautics and Astronautics Paper 2005-1381

20 T T T T T T
417 MB dataset
15+ -
= i
%)
E 10]
=
= i
5 — —
0 | L | ! | ! | L 1 L
10 20 30 40 50 60

number of processors

Figure 4. Wall time for parallel CGNS I/O using PVFS for 417 MB data set

but independent of the data set size a slow down in the neighborhood of 8 processors is observed. Increas-
ing the number of processors beyond 16 gives again speedup for the I/O performance. The improvement
using parallel CGNS and the PVFS on a Linux cluster is satisfactory and shows the potential performance
improvements of using parallel I/O for large scale CFD applications.

—_—_

=—a 8.2 MB dataset

’ o—o 57 MB dataset
317 MB dataset "\
3 — —

speedup

. I : | ‘ | ‘ 1 .
10 20 30 40 50 60
number of processors

Figure 5. Speedup for parallel CGNS I/0 using PVFS

B. Write Performance

The write performance is tested on NSF and PVFS2 on the Faust cluster. We measured three different
times: total time of the output, time until end of the creation of the data sets, write time into the empty
data sets. In this test case three different grid sizes were used: 50x50x50, 150x150x150 and 250x250x250.
The problem size is also scaled with the number of processors. Each processor contains one zone with the
above mentioned sizes. This means that the file size increases up to a maximum size on 16 processors of
23.0 MB, 618 MB and 2.8 GB. Note also that HDF5 is able to write files large than 2.0 GB on a 32 bit
computing platform.

We stopped our benchmarks using 8 processors, because 1/O times using NFS were to large. In Figure
6 all three grid sizes show similar behavior. The total I/O time increases with the problem size. This was
expected behavior because all processors compete for the disk bandwidth on the FAUST master server.

Comparing Figure 6 with Figure 7 shows the large difference in performance of the parallel file system

5 of 8

American Institute of Aeronautics and Astronautics Paper 2005-1381

240 I I T]

é—e 50x50x05 per zone
=8 150x150x150 per zone
250x250x250 per zone =

220

=}
2

B E E 2B
[

8
|

total wall clock time [s]

5}
w
-~
w
N
~
o

number of processors

Figure 6. Total wall time for writing the data sets on NFS

07—

e—=o 50x50x05 per zone
B8 150x150x150 per zone

40 250x250x250 per zone .

30 —

total wall clock time [s]

0 4 & ! L | L | L |
0 2 4 6 8 10 12 14 16
number of processors

Figure 7. Total wall time for writing the data sets on PVFS2

compared to NFS. The PVFS2 file system performs 35 times faster on the 150x150x150 grid case. The total
time shows some increase in time with the increase of the problem time. To look more detailed into the two
phases of the output, the creation time and the write time into the empty data set are plotted in Figures 8
and 9 respectively.

As expected, since the creation of the data sets is done collectively by all processors, the creation time
scales nearly linearly with the number of processors as shown in Figure 8. This is the phase of the writing
which cannot be parallelized. This time is about 20% of the total I/O time.

In Figure 9 the time the parallel program uses to write into the empty, previously created, data sets. It
shows not perfect scaling, which would be constant I/O time over the whole range of processors, but the
increase in time is not very dramatic.

V. Conclusion

Linux cluster computing appears to be the next-generation of supercomputing, offering options from large
shared-use machines to small, dedicated, single application systems. However, optimal use of this systems
for computational fluid dynamics will require tuning the software for the new hardware architectures. In

6 of 8

American Institute of Aeronautics and Astronautics Paper 2005-1381

L L T

é—e 50x50x05 per zone
10— =8 150x150x150 per zone |
250x250x250 per zone

creation wall clock time [s]
=S
T
|

5]
I

T
0 2 4 6 8 10 12 14 16
number of processors

Figure 8. Creation time for creating the data sets on PVFS2

W

e—=o 50x50x05 per zone
B8 150x150x150 per zone
250x250x250 per zone

write wall clock time [s]

o 4 & L 4 } t ; i T
0 2 4 6 8 10 12 14 16
number of processors

Figure 9. Total wall time for writing into the empty data sets on PVFS2

this work the serial CGNS API was extended with a prototype implementation of parallel I/O for the CGNS
system. By building on top of HDF5 the implementation took advantage of the already existing parallel
HDF5 implementation on top of MPI-1IO. Input and output time was measured and the results demonstrate
the superior performance of the parallelized CGNS system.

VI. Future Work

More detailed benchmarking is necessary to identify bottle necks and optimize HDF5 and the underlying
parallel file system. With the new upcoming release of CGNS with integrated HDF5 support, we will port
and finalize the parallel API. A alpha release is expected by end of April. Support for parallel I/O of
unstructured grids needs to be added.

VII. Acknowledgment

This work is supported in part by National Science Foundation grant CTS-0321170.

7of 8

American Institute of Aeronautics and Astronautics Paper 2005-1381

References

IPoirier, D., Allmaras, S. R., McCarthy, D. R., Smith, M. F., and Enomoto, F. Y., “The CGNS System,” AIAA Paper
98-3007, 1998.

2Poirier, D. M. A., Bush, R. H., Cosner, R. R., Rumsey, C. L., and McCarthy, D. R., “Advances in the CGNS Database
Standard for Aerodynamics and CFD,” AIAA Paper 2000-0681, 2000.

3Legensky, S. M., Edwards, D. E., R. H. Bush, D. M. A. P., Rumsey, C. L., Cosner, R. R., and Towne, C. E., “CFD General
Notation System (CGNS): Status and Future Directions,” AIAA Paper 2002-0752, 2002.

4Hauser, T., “Parallel 1/O for the CFD General Notation System,” Proceedings of the 42nd AIAA Aerospace Sciences
Meeting and Ezhibit, Reno, NV, January 05-08 2004.

5Dietz, H. G. and Mattox, T. I., “Compiler Techniques for Flat Neighborhood Networks,” to appear in Conference Record
of the International Workshop on Programming Languages and Compilers for Parallel Computing, New York, August 2000.

SDietz, H. G. and Mattox, T. 1., “KLAT2’s Flat Neighborhood Network,” the Extreme Linuz track in the 4th Annual Linux
Showcase, Atlanta, GA, October 2000.

7111, W. L. and Ross, R., “PVFS: Parallel Virtual File System,” Beowulf Cluster Computing with Linuz, edited by T. Ster-
ling, MIT Press, November 2001, pp. 391-430.

8 “The Parallel Virtual File System, Version 2,” http://www.pvfs.org/pvfs2.

8 of 8

American Institute of Aeronautics and Astronautics Paper 2005-1381

http://www.pvfs.org/pvfs2

	Introduction
	The parallel CGNS system
	Parallel HDF5
	Parallel Implementation

	Performance Benchmarks
	FAUST - a low cost Beowulf Cluster
	Network File System
	Parallel Virtual File System 2

	Performance Results
	Read Performance
	Write Performance

	Conclusion
	Future Work
	Acknowledgement

