
AIAA-2000-0681

ADVANCES IN THE CGNS DATABASE STANDARD FOR
AERODYNAMICS AND CFD

Diane M. A. Poirier*

ICEM CFD Engineering, Berkeley, CA
Robert H. Bush†

United Technologies Research Center, East Hartford, CT
Raymond R. Cosner‡

Boeing Phantom Works, St-Louis, MO
Christopher L. Rumsey§

NASA Langley Research Center, Hampton, VA
Douglas R. McCarthy¶

Boeing Commercial Airplane Group, Seattle, WA

The CFD General Notation System (CGNS) standard has grown significantly since its first public release in
May 1998. The Standard Interface Data Structures (SIDS) and corresponding Application Programming
Interface (API) have been extended to support unstructured analysis data and geometry-to-mesh
association. Several other extensions are currently under review: rigid grid motion, deforming grid, time-
accurate and iterative data, chemistry, multigrid, rotating coordinate systems, periodic boundary conditions,
wall functions, 2D axisymmetry and Cartesian data. In parallel with the growth of the CGNS standard, the
CGNS governing body has evolved into an independent entity and established its own charter. Efforts have
also been undertaken to promote CGNS as the ISO standard for the recording of aerodynamic data. This
paper reviews the progress made by CGNS over the past eighteen months. It first describes the technical
advances in the CGNS database standard, followed by an overview of the new CGNS organization. Then
the status of the CGNS in the ISO standardization process is presented, as well as a review of
implementation and dissemination of CGNS.

1. Introduction
The CGNS (CFD General Notation System) project
originated during 1994 through a series of meetings that
addressed improved transfer of NASA technology to
industry. A principal impediment in this process was the
disparity in I/O formats employed by various flow codes,
grid generators, and other utilities, and CGNS was
conceived as a means to promote "plug-and-play" CFD.
Agreement was reached to develop CGNS at Boeing,
under NASA Contract NAS1-20267, with active
participation by a team of CFD researchers from
NASA's Langley, Lewis (now Glenn), and Ames

Research Centers, McDonnell Douglas Corporation (now
part of Boeing), and Boeing Commercial Airplane Group.
This team, which was joined by ICEM CFD Engineering
Corporation of Berkeley, California in 1997, undertook the
core of the development. However, in the spirit of creating a
completely open and broadly accepted standard, all
interested parties were encouraged to participate; the US Air
Force and Arnold Engineering Development Center were
notably present. From the beginning, the purpose was to
develop a system that could be distributed freely, including
all documentation, software and source code. This goal has
now been fully realized; further, as described below, control
of CGNS has been completely transferred to a public forum
known as the CGNS Steering Committee.
The specific purpose of CGNS was to provide a standard for
recording and recovering computer data associated with the
numerical solution of the equations of fluid dynamics. The
intent was to facilitate the exchange of CFD data between
sites, between applications codes, and across computing
platforms, and to stabilize the archiving of CFD data. The
format implemented by this standard was to be (1) general,
(2) portable, (3) expandable, and (4) durable.

This material is declared work of the U.S. Government and is
not subject to copyright protection in the United States.

* Software Engineer, Member AIAA.
† Group Leader, Simulation and Modeling,
 Associate Fellow AIAA.
‡ Senior Technical Fellow, Associate Fellow AIAA.
§ Research Scientist, Associate Fellow AIAA.
¶ Principal Engineer, Member AIAA.

AIAA 2000-0681

American Institute of Aeronautics and Astronautics
2

The resulting system today consists of a collection of
conventions, and software implementing those
conventions, for the storage and retrieval of CFD data.
The system consists of two parts: (1) a standard format
for recording the data, and (2) software that reads,
writes, and modifies data in that format. The format is a
conceptual entity established by the documentation; the
software is a physical product supplied to enable
developers to access and produce data recorded in that
format.
The principal target is the data normally associated with
compressible viscous flow (i.e., the Navier-Stokes
equations), but the standard is also applicable to
subclasses such as Euler and potential flows, and
superclasses such as chemically reacting flows. The
initial release addressed multi-block grids, flow fields,
boundary conditions, and block-to-block connection
information, as well as a number of auxiliary items, such
as non-dimensionalization, reference states, and equation
set specifications. This stage of development was
summarized in reference 6. The current paper describes
the extensions undertaken since, including unstructured
mesh, moving grids, connections to geometry definition,
and chemistry.
It is worth noting that extensibility is a fundamental
design characteristic of the system, which in principal
could be used for other disciplines of computational field
physics, such as acoustics or electromagnetics, given the
willingness of the cognizant scientific community to
define the conventions.
The standard format, or paper convention, part of CGNS
consists of two fundamental pieces. The first, known as
the Standard Interface Data Structures2 (SIDS), describes
in detail the intellectual content of the information to be
stored. It defines, for example, the precise meaning of a
"boundary condition". The second, known as the File
Mapping4, defines the exact location in a CGNS file
where the data is to be stored.
The implementation, or software, part of CGNS likewise
consists of two separate entities. CGNS files are read and
written by a stand-alone database manager called ADF3

(Advanced Data Format). ADF manages a tree-like data
structure, implemented as a binary file. Since the format
of this file is completely controlled by ADF, and since
ADF is written in ANSI C (FORTRAN wrappers are
provided), these files and ADF itself are portable to any
environment which supports ANSI C. ADF is available
separately and constitutes a useful tool for the storage of
large quantities of scientific data.
ADF, however, implements no knowledge of CFD or of
the File Mapping. To simplify access to CGNS files, a
second layer of software known as the Mid-Level

Library5 is provided. This layer is in effect an API, or
Application Programming Interface for CFD. The API
incorporates knowledge of the CFD data structures, their
meaning and their location in the file, enabling applications
such as flow codes and grid generators to access the data in
familiar terms. The API is therefore the piece of the CGNS
system most visible to applications developers. Like ADF,
the API is written in ANSI C; all public API routines have
FORTRAN counterparts.
The overall architecture of CGNS is that of shared files
accessible by the various software tools common to CFD:
solvers, grid generators, field visualizers, and
postprocessors. These applications must be modified, using
the API, to be able to access CGNS data. Each application
then serves as an editor of the data, adding to, modifying or
interpreting it according to that application’s specific role.
The user, or a locally developed user interface, remains
responsible for executing the required actions and for the
disposition of the files.
The CGNS elements are documented individually. Visitors
to the main web site, www.CGNS.org, will find all
documentation, as well as the software, both compiled and
source code. For those new to CGNS, the Overview1 and the
CGNS System paper6 are recommended.

2. Advances in the CGNS System
The first release of the CGNS standard supported structured
topology, where multi-block connectivity could be either
one-to-one abutting, mismatched abutting or overset. It
defined standards for the storage of grid coordinates, flow
solutions, boundary conditions, convergence history, and
reference state. Dimensional units and non-
dimensionalization information could be associated with
each type of data. Additionally, it provided conventions for
archiving the governing equations including the gas,
viscosity, thermal conductivity, turbulence and diffusion
models. It also provided for the recording of descriptive
data throughout the file.
Following this first release, the project to add support for
unstructured topology and geometry-to-mesh association
was immediately undertaken. Proposals were collected and
the CGNS team organized meetings with CFD researchers
familiar with unstructured topology and/or geometry data.
New data structures were defined and added to the standard
to hold the additional information, and the CGNS library
was augmented to support the new data structures.
Paragraphs 2.1 and 2.2 describe the implementation of the
unstructured topology and geometry-to-mesh association in
the CGNS standard.
Several other extensions are currently under work at various
stages of maturity. The proposals for adding support for

AIAA 2000-0681

American Institute of Aeronautics and Astronautics
3

rigid grid motion, point by point grid motion (deforming
grid), and iterative or time-accurate data are pending
final approval and will be the next addition to the CGNS
API. These new data structures are described in
paragraphs 2.3 to 2.5. Other proposals still at the
discussion level include the addition of chemistry,
multigrid, rotating coordinates, periodic boundary
conditions, wall functions, 2D axisymmetry and
Cartesian data.

2.1 Unstructured Analysis Data
This section describes how the addition of unstructured
data was incorporated to the CGNS system, and how it
affected the Standard Interface Data Structures (SIDS).
There are basically two major differences between the
way structured and unstructured mesh data are recorded.
In a structured mesh, a node is identified with its
computational coordinates. A node has as many
computational coordinates as there are dimensions in the
mesh. For example, in a 3D grid, any node position in
the mesh is uniquely defined giving three computational
coordinates. The physical coordinate vectors and all the
field vectors (solution, discrete boundary conditions,
etc.) use the computational coordinates of each node as
array indices. However, the mapping of the physical
coordinates to the computational coordinates is only
possible in a structured grid. In an unstructured grid, the
nodes are simply given a number from 1 to N, where N
is the number of nodes.
The second major difference in the way structured and
unstructured grids are recorded is the element definition.
In a structured grid, the elements can always be
recomputed easily using the computational coordinates,
and therefore they are usually not written in the data file.
For an unstructured grid, the element connectivity can
not be easily built, so this additional information is
generally added to the data file. The element
information typically includes the element type or shape,
and the list of nodes for each element.
In order to conciliate the differences between structured
and unstructured mesh files, two new parameters were
introduced. The SIDS already defined the expression
IndexDimension as the number of computational
coordinates required to uniquely define a node in a mesh.
For structured grids, this number equals the dimension of
the mesh cells. For unstructured grid, only one index is
necessary to locate a node in the mesh, regardless of the
dimension of the mesh cells. The parameter
IndexDimension is no longer sufficient to indicate
the dimensionality of the cells. Therefore a second
dimensional parameter called CellDimension was
defined. For structured meshes, CellDimension and

IndexDimension are always equal, but for unstructured
grids, they differ when the cells have two or more
dimensions.
To define a vector in a mesh, such as the normal vector to a
mesh face, one needs to know the number of dimensions in
the physical space. For example, the surface mesh around
an aircraft is composed of bi-dimensional cells (faces or
shell elements), but expressing the normal vectors to these
cells requires three-dimensional physical coordinates. This
leads to the definition of a third dimensional parameter, the
PhysicalDimension. In addition to the topolgy type
(structured or unstructured), these three parameters,
IndexDimension, CellDimension and
PhysicalDimension, are necessary to uniquely define a
particular mesh type. For example, an unstructured surface
mesh on an aircraft implies that:

IndexDimension=1
CellDimension=2
PhysicalDimension=3

Table 1 summarizes all possible combinations of these
parameters for structured and unstructured grids.

The definition of the new dimensional parameters
CellDimension and PhysicalDimension allowed
using most of the existing SIDS with minimal changes when
adding support for unstructured grids. By selecting the
appropriate dimensional parameter to set the size of data
arrays, the same data structures can be used for both
structured and unstructured cases. For example, the number
of nodes can be recorded in the array:

Nnodes[IndexDimension]

For a 3D-structured grid, this automatically leads to a 3D
array containing the number of nodes in each of the three
computational directions. On the other hand, it results in a
mono-dimensional array for a 3D-unstructured grid. The
solution vector and grid coordinates are also recorded in
arrays of IndexDimension dimensions. Therefore, their

Mesh type IndexD CellD PhysD
3D structured 3 3 3
2D structured in 2D space 2 2 2
2D structured in 3D space 2 2 3
1D structured in 1D space 1 1 1
1D structured in 2D space 1 1 2
1D structured in 3D space 1 1 3
3D unstructured 1 3 3
2D unstruct. in 2D space 1 2 2
2D unstruct. in 3D space 1 2 3
1D unstruct. in 1D space 1 1 1
1D unstruct. in 2D space 1 1 2
1D unstruct. in 3D space 1 1 3

Table 1 Dimensional parameters for all mesh types

AIAA 2000-0681

American Institute of Aeronautics and Astronautics
4

definition is independent of the mesh type as well. The
new parameters CellDimension and
PhysicalDimension also fulfill the purpose of
generalizing the data structures for both topology types.
The connectivity between zones is defined using
interpolation coefficients to locate each point of a zone
in the neighboring zone. The number of coefficients
required is equal to CellDimension, independently
of the mesh type. Similarly, position vectors or normal
vectors are defined using the dimensional parameter
PhysicalDimension in both types of meshes.
As a result, the unstructured zones were introduced into
the CGNS system without the need to define a new data
structure specific to unstructured mesh. Not only does
this simplify the SIDS, but it also facilitates the API and
its implementation. As before, a CGNSBase_t data
structure may contain one to several zones. The only
difference now is that some of these zones may be
structured, while others are unstructured.
To accommodate the definition of unstructured zones,
two new children were added to the Zone_t data
structure, as shown in Figure 1. The node

ZoneType_t records if the zone is structured or
unstructured. It simply holds the data-name identifier
Structured or Unstructured. The other new
child is the data structure Elements_t that holds the
element information for unstructured grids. A zone may
contain several Elements_t data structures. Each
Elements_t data structure holds several child nodes,
as illustrated in Figure 2. The ElementRange node
contains the index of the first and last elements defined
in the ElementConnectivity_t array. The
elements are indexed with a global numbering system for
all element sections in the same Zone_t data structure.
They are also listed as a continuous list of element
numbers within a single element section. These element
indices may be used elsewhere in the database to define

a boundary condition patch, or to specify zone to zone
connectivity. ElementType_t is an enumeration of the
supported element types.
ElementType_t := enumeration(
Null, NODE, BAR_2, BAR_3,
TRI_3, TRI_6, QUAD_4, QUAD_8, QUAD_9,
TETRA_4, TETRA_10, PYRA_5, PYRA_14,
PENTA_6, PENTA_15, PENTA_18,
HEXA_8, HEXA_20, HEXA_27, NGON_n);

Where NGON_n is used to express a polygon of n nodes.
ElementSizeBoundary indicates if the elements are
sorted, and how many boundary elements are recorded. By
default, ElementSizeBoundary is set to zero,
indicating that the elements are not sorted. If the elements
are sorted, ElementSizeBoundary is set to the number
of elements at the boundary, and the boundary elements are
listed first in the ElementConnectivity array.
For face elements in 3D, or bar elements in 2D, information
regarding the parent cells may be recorded. ParentData
holds the parent cell numbers of a face element, and the face
position within these parent elements. At the boundaries,
the second parent is set to zero.

2.2. Geometry-to-Mesh Association
Another important segment of the CFD data is the
description of the geometry data. The definition of the
underlying geometry is mandatory to perform operations
such as mesh refinement or coarsening. It may also be
necessary in various post-processors for the analysis and
display of the results. This section describes how the
geometry-to-mesh association was incorporated in the
CGNS system.
The goal in the CGNS geometry specification is to connect
the geometry definition of the various components of a
model to the computational grid. It enables the recovery of
the geometry corresponding to a given mesh surface, or vice
versa.
The CGNS team decided not to create a new geometry file
format, but rather to link to the existing ones. This approach

GridCoordinates_t FlowSolution_t

ZoneGridConnectivity_t ZoneBC_t

Descriptor_t ReferenceState_t

DataClass_t DimensionalUnits_t

FlowEquationSet_t ConvergenceHistory_t

Zone size ZoneType_t

FamilyName_t Elements_t

Zone_t

Fig.1 Zone Data Structure

ElementRange ElementSizeBoundary

ElementType_t ElementConnectivity

ParentData Descriptor_t

Elements_t

Fig. 2 Elements Data Structure

AIAA 2000-0681

American Institute of Aeronautics and Astronautics
5

offers several advantages with respect to incorporating
the CGNS system into existent software applications.
Most CFD users have already adopted a CAD system
file format, which is most likely intricately connected to
their software. Agreeing to change to a new CAD file
format could imply major rewriting of several CFD
software tools. At the very least, translators would be
needed to interface back and forth between each CAD
file format and a new CGNS standard. This would make
the implementation of the new standard more laborious.
In addition, most existing CAD file formats have proven
to be effective and sufficient to accurately define the
geometry data and to facilitate data exchange between
sites and applications. To create a new format would
duplicate existing work. For these reasons, it was
decided that the CAD geometric entities described in the
CAD database would not be redefined within the CGNS
file. Instead the CGNS system would incorporate the
geometry-to-grid connectivity by referring directly to the
geometric entities defined in these CAD files.
Since there is rarely a 1-to-1 connection between mesh
regions and geometric entities, the geometry-to-mesh
associations are set through one layer of indirection.
Rather than mapping the geometry data directly to the
mesh entities, the association is made indirectly using a
layer of objects called CFD families. A CFD family
may be composed of one or several mesh regions (blocks
or boundary condition patches). In the corresponding
CAD file, the same family is represented by a group of
geometric entities such as b-spline curves and surfaces,
on which the mesh faces are projected. Each family is
contained solely within a single CAD database.
The association between a node and a CFD family is
easily made invariable under most CAD modeling
operations. The association between a node and a
specific CAD entity can not. Therefore one of the main
advantages of this layer of indirection concept is that the
mesh density and geometric entities may be modified
without altering the association between nodes and
families, or between families and geometric entities.
This is very beneficial when handling boundary
conditions and properties. Instead of setting boundary
conditions directly on mesh entities, they can be
associated with the families (FamilyBC_t). Since the
families are stable in the sense that they are not subject
to operations such as geometric changes, modification of
mesh topology, mesh refinement or coarsening, the
boundary conditions do not need to be redefined each
time the model is modified.
For the purpose of defining properties, families are also
supported on groups of interior mesh elements. For
example, a 3D mesh may comprise several CFD families

of 3D elements, and several CFD families of boundary
elements. The families of 3D elements are typically used to
specify volume properties, e.g. material properties such as
porosity, while those containing 2D elements serve
primarily to define boundary conditions.
The implementation of the geometry-to-mesh association
implied a few additions to the SIDS. The most important
one was to create a new data structure to hold the CFD
family data. The new data structure is called Family_t
and is added to the CGNSBase_t structure for each CFD
family of the model. Figure 3 shows the layout of this data
structure within the CGNS hierarchical database.

The Family_t data structure contains the name of the file
where the geometry is stored (GeometryFile_t), as well
as the geometry format (GeometryFormat_t) in which
the file is written (IGES, SDRC, Unigraphics, Pro-Engineer,
etc.). In addition, one may specify for each CFD family, the
name of the geometry entities (GeometryEntity_t) to
be associated with the family. There may be one to several
geometry entities for a given family. If no geometry entity
is specified, it is assumed by default that the family name
and the geometry entity name are the same.
Node and family association is implemented by assigning a
FamilyName to a group of nodes of the computational
grid. The family name consists of an alphanumeric string.
A FamilyName is an optional attribute to each zone and
boundary condition patch. It is stored within the CGNS file
under the zone (Zone_t) or the boundary condition
(BC_t) data structures.
The following three sections describes proposals for the
addition of rigid grid motion, arbitrary grid motion and
iterative or time-accurate data. These proposals are mature
and should be soon incorporated to the API.

GeometryFile_t

GeometryFormat_t

GeometryEntity_t

GeometryReference_t

BCType_t

FamilyBC_t

Family_t
FamilyName

CGNSBase_t

Fig.3 Family Data Structure

AIAA 2000-0681

American Institute of Aeronautics and Astronautics
6

2.3. Grid Motion
The addition of rigid body motion data to the CGNS file
enables the use of moving grids such as might be
required for turbo-machinery applications. The mesh
location is determined without the need to alter the
original mesh definition recorded under
GridCoordinates_t. A new data structure named
RigidGridMotion_t is created to record the
necessary data defining a rigid translation and/or rotation
of the grid coordinates.
It is proposed that the rigid grid motion be recorded
independently for each zone of the CGNS base.
Therefore the RigidGridMotion_t data structure
would be added under each zone data structure
(Zone_t). There may be zero to several
RigidGridMotion_t nodes under a Zone_t node.
The multiple rigid grid motion definitions may be
associated with different iterations or time steps in the
computation. This association is recorded under the
IterativeOrTemporalData_t data structure
(paragraph 2.5).
The RigidGridMotion_t data structure is illustrated
in Figure 4. RigidGridMotionType_t is an

enumeration type that describes the type of rigid grid
motion. It may be set to either ConstantRate or
VariableRate. ConstantRate is used when the
RigidVelocity and RigidRotationRate are
both constant and at least one is nonzero.
OriginLocation holds the physical coordinates of
the origin before and after the rigid grid motion. The
RigidRotationAngle node records the rotation
angles about each axis of the translated coordinate
system. RigidVelocity is the velocity vector of the
origin translation and RigidRotationRate is the
rotation rate vector about the axis of the translated
coordinate system.

Additional optional elements are DataClass_t,
DimensionalUnits_t and Descriptor_t. Any
number of DataArray_t nodes may also be recorded
under the RigidGridMotion_t data structure to support
data not covered by this specification.

2.4. Arbitrary Grid Motion
The ArbitraryGridMotion_t data structure allows
the CGNS file to contain information about arbitrary grid
deformations such as might be required for unsteady
aeroelastic applications. If not present, the grid is assumed
to be rigid.
It is proposed that the arbitrary grid motion be recorded
independently for each zone of the CGNS base. Therefore
the ArbitraryGridMotion_t data structure would be
added under each zone data structure (Zone_t). There
may be zero to several ArbitraryGridMotion_t
nodes under a Zone_t node. The multiple arbitrary grid
motion definition may be associated with different iterations
or time steps in the computation. This association is
recorded under the IterativeOrTemporalData_t
data structure (paragraph 2.5).
The ArbitraryGridMotion_t data structure is
illustrated in Figure 5. The DataArray_t nodes are used
to store the components of the grid velocity vector. Table 2

lists the new data-name identifiers proposed to record these
vectors in the Cartesian, cylindrical, spherical, and auxiliary
coordinate systems.
ArbitraryGridMotionType_t is an enumeration
type that describes the type of arbitrary grid motion. The
type is either NonDeformingGrid or
DeformingGrid. The only required element of the
ArbitraryGridMotion_t data structure is the
ArbitraryGridMotionType. Thus, even if a
deforming grid application does not require the storage of
grid velocity data, the ArbitraryGridMotion_t node
must exist, with ArbitraryGridMotionType set to
DeformingGrid, to indicate that the mesh coordinates
after deformation are recorded under the given zone.

RigidGridMotionType_t OriginLocation

RigidVelocity RigidRotationRate

RigidRotationAngle Descriptor_t

DataArray_t DataClass_t

DimensionalUnits_t

RigidGridMotion_t

Fig. 4 Rigid Grid Motion Data Structure

ArbitraryGridMotionType_t GridVelocityN

GridLocation_t Rind_t

DataClass_t DimensionalUnits_t

Descriptor_t

ArbitraryGridMotion_t

Fig. 5 Arbitrary Grid Motion Data Structure

AIAA 2000-0681

American Institute of Aeronautics and Astronautics
7

The DataClass_t, DimensionalUnits_t and
Descriptor_t nodes may optionally be specified
under the RigidGridMotion_t nodes. Rind is an
optional field that indicates the number of rind planes
included in the grid velocity data. It only applies to
structured zones. The GridLocation specifies the
location of the velocity data with respect to the grid; if
absent, the data is assumed to coincide with grid vertices
(i.e. GridLocation = Vertex).
In addition to the creation of the
ArbitraryGridMotion_t data structure to record
the velocity of each grid point, it is proposed to allow
multiple GridCoordinates_t nodes under a
Zone_t. This enables the storage of the instantaneous
grid locations at different time steps or iterations. The
original grid coordinates definition, as currently defined
in the SIDS, remains unchanged with the name
GridCoordinates. Point by point grid velocity
implies a deformation (or potentially only motion) of the
grid points relative to each other. Because the original
grid coordinates definition is to remain unchanged, any
deformed coordinates are to be written with a different
name (e.g., GridCoordinates1 or another user-
defined name) and are to be pointed to using the
GridCoordinatesPointers in the data structure
IterativeOrTemporalData_t (paragraph 2.5).

2.5 Iterative and Time-Accurate Data
In order to keep a record of time dependent or iterative
solutions and mesh data, a new data structure called
IterativeOrTemporalData_t is defined. This
new data structure contains information relative to each
time step or iteration stored.
It is proposed that the interative and time-accurate _data
structure be recorded independently for each zone of the

CGNS base. Therefore it would be added under each zone
data structure (Zone_t). There may be zero to several
IterativeOrTemporalData_t nodes under a
Zone_t node.
Several different simulation types may be recorded under
CGNS, but all zones under the same CGNS base must have
the same simulation type. It is proposed to add a new
Descriptor_t node under the CGNSBase_t data
structure to specify which simulation type is recorded in the
base. The Descriptor_t node named
SimulationType holds a simulation type identifier such
as NonTimeAccurate or TimeAccurate.
The IterativeOrTemporalData_t data structure is
illustrated in Figure 6. The number of time steps or the
number of iterations is a required element of this data
structure, and is recorded in the field NumberOfSteps.

TimeValues or IterationValues must also be
defined. If both are used, there must be a one-to-one
correspondence between them. The data arrays:

RigidGridMotionPointers,
GridCoordinatesPointers,
FlowSolutionsPointers and
ArbitraryGridMotionPointers,

are optional. Their purpose is to associate with each time
step or iteration the appropriate data structures for rigid grid
motion, arbitrary grid motion, grid coordinates and flow
solutions. They refer by name to data structures within the
current zone. The name “Null” is used when a particular
time or iteration does not have a corresponding data
structure to point to.
The DataClass_t, DimensionalUnits_t and
Descriptor_t nodes may optionally be specified under
the IterativeOrTemporalData_t nodes. In
addition, any number of DataArray_t node is allowed.
These should be used to record data not covered by this
specification.

NumberOfSteps TimeValues

IterationValues GridCoordinatesPointers

FlowSolutionPointers RigidGridMotionPointers

ArbitraryGridMotionPointers DataArray_t

Descriptor_t DataClass_t

DimensionalUnits_t

IterativeOrTemporalData_t

Fig. 6 Iterative or Temporal Data Structure

Data-Name Identifier Nodes Velocity Units

GridVelocityX x-component L/T

GridVelocityY y-component L/T

GridVelocityZ z-component L/T

GridVelocityR R-component L/T

GridVelocityTheta Theta-component α/T

GridVelocityPhi Phi-component α/T

GridVelocityXi Xi-component L/T

GridVelocityEta Eta-component L/T

GridVelocityZeta Zeta-component L/T

 Table 2. Name Identifiers for the Nodes Velocity

AIAA 2000-0681

American Institute of Aeronautics and Astronautics
8

The data structures defining rigid grid motion, arbitrary
grid motion and iterative or time-accurate data are the
first proposals to follow the extension review process
recently established by the CGNS Steering Committee.
The following section describes the new organization
governing CGNS, and how CGNS users may submit
proposals for extensions to the existing standard.

3. CGNS Steering Committee
The CGNS Steering Committee has been formed to
ensure the continuation of the CFD General Notation
System. The Committee has adopted a Charter that was
approved by the Committee on 21 October 1999. The
Charter lays out the mission, organization and governing
principles of the Steering Committee. The Charter can
be found at the CGNS web site, at www.CGNS.org.
In summary, the Charter defines several responsibilities
of the CGNS Steering Committee that support its
fundamental mission. They include:
� maintaining the software implementing the

Standard, documentation of the Standard and an
open web site to disseminate information on the
Standard,

� providing mechanisms for the evolution of the
Standard,

� promoting the acceptance of the Standard,
� providing user services, and
� determining the means to fund activities in support

of the Standard.
The CGNS Steering Committee is organized as a
voluntary organization that governs by consensus. The
Committee meets at a minimum of once per year, and is
represented by a Chairperson. The Chairperson
coordinates activities, facilitate meetings and serves as a
focal point for the Committee. The Charter explicitly
states that all parties are welcome to bring forward issues
and participate in the development of the Standard,
whether or not they are members of the Steering
Committee. The CGNS Steering Committee is made up
of representatives from specific institutions, rather than
individuals. Membership on the Committee is currently
limited to 15 institutions that participate in the
development, maintenance, distribution and use of the
Standard. The initial members of the Steering
Committee are:
� NASA Ames
� NASA Langley
� NASA Glenn
� Boeing Commercial
� Boeing Phantom Works
� Boeing Space & Communications
� United Technologies Research Center

� ICEM CFD Engineering
� Fluent, Inc.
� Rolls-Royce Allison
� US Air Force
� ADAPCO
The CGNS Charter also defines Standing Committees to
which the Steering Committee may delegate responsibilities.
These committees make recommendations to the Steering
Committee, which retains the authority to make final
decisions. The current Standing Committees are:
� Outreach/Membership Team
� Documentation Committee
� Software Focal Point
The Software Focal Point is the prime source for
maintaining and distributing the existing documentation and
software, and developing and distributing new software
resulting from extensions to the standard.
The CGNS Charter also lays out the governing principles
that are to be followed. In general, the Charter calls on the
Committee to adhere to the philosophy used for “free
software”, as defined under the GNU Lesser Public License.
In particular, the freedom to:
� Run the program, for any purpose (freedom 0)
� Study how the program works, and adapt it to ones

needs (freedom 1)
� Redistribute copies so one can help their neighbor

(freedom 2)
� Improve the program, and release improvements to the

public, so that the whole community benefits (freedom
3)

These freedoms promote the promulgation of the CGNS
Standard by allowing users the freedom to redistribute
copies, with or without modifications, either gratis or
charging a fee for distribution, to anyone anywhere.
The Charter also calls for changes and additions to the
Standard. CGNS has been developed with the key concepts
of flexibility and extensibility in mind. In order to address a
perceived need or deficiency in the Standard, a proposal
must be submitted to the Steering Committee. The proposal
is then presented in an open and public forum, and includes
a draft of changes to the SIDS and File Mappings. Finally,
the Steering Committee is responsible for accepting, altering
or rejecting the proposal, and determines the timetable for
implementation. The primary requirement for any proposal
is to maintain code compatibility with the existing Standard.

4. Migration to an ISO standard
The Boeing Company has been a participant from the start
in the development of the CGNS standard for CFD data.
For many years, Boeing also has taken an active role in the
development of ISO standards for the exchange of

AIAA 2000-0681

American Institute of Aeronautics and Astronautics
9

engineering data. In February 1998, Boeing initiated an
activity to establish an evolved form of the CGNS data
standard as an ISO standard for archiving and
exchanging aerodynamic data. Boeing’s plan to lead the
development of this standard was presented to ISO
Technical Committee 184 (Industrial Automation
Systems and Integration), Subcommittee 4 (Industrial
Data), Working Group 3 (Product Modeling) during their
meeting in January 1999.
In November 1999, Boeing presented to this Working
Group a formal proposal for development of an
aerodynamics data exchange standard. This proposal has
been accepted by the ISO organization. The effort to
develop an Aerodynamics Application Protocol (AP) is
now formally sanctioned as an ongoing ISO project. The
end product will be an ISO/STEP AP2xx (200-series
number not yet assigned).
The cognizant ISO subcommittee (SC4 – Industrial
Data) consists of seventeen voting member countries.
Decisions throughout this process are made on the basis
of one country, one vote. The seven stages in developing
an ISO Application Protocol7 (AP) standard are:
1. Preliminary Stage – Planning for possible

standardization projects (accomplished 1998-99).
2. Proposal Stage – Culminates in approval to start a

new AP project (completed November 1999).
3. Preparatory Stage – Develop a Working Draft and a

New Work Item (planned completion October
2000).

4. Committee Stage – Consensus is achieved on a
Committee Draft (planned to start October 2000).

5. Enquiry Stage – Vote on Draft International
Standard.

6. National Stage – Vote on Final Draft International
Standard.

7. Publication Stage – ISO publishes the International
Standard.

The ISO approval process specifies a schedule for
advancing through these stages. Most ISO standards
projects begin with an idea and a clean sheet of paper.
CGNS, however, is at a far more advanced state.
Therefore, it is believed that this initiative can advance
through the approval stages at an accelerated pace. The
ISO approval “clock” begins running when the New
Work Item is approved. Current plans anticipate this
approval in October 2000. Table 3 display the ISO
required schedule and planned completion dates, based
on this assumed approval date.
The current plan is to focus first on completion of the
CFD data standard based on CGNS. However, the
ultimate scope also will encompass other forms of
aerodynamic and fluid dynamic digital data, including

wind tunnel data and flight test data. Once the CFD portion
of the AP standard is in place, we anticipate extending the
AP by amendments to include these additional types of data.
The schedule presented above applies to the initial standards
process, not to the process of planned amendments.

Based on initial feedback from ISO subcommittee members,
the scope also should extend beyond aerospace
aerodynamics to include ground vehicle fluid dynamics and
ship hydrodynamics. In a planning meeting held in
December 1999, a decision was taken to accept this
requested increase in scope. Accordingly, the project has
been re-titled from “Aerodynamics AP” to “Fluid Dynamics
AP”. However, the planning sequence is unchanged: to
establish a CFD data exchange standard first (in accord with
the schedule presented above), and to extend the data
exchange standard subsequently to accommodate other
types of digital data in fluid dynamics.
In the process of reaching agreement on an ISO standard, it
is anticipated that significant modifications may be
proposed based on the current CGNS standard. People or
organizations wishing to participate in this process are
invited to contact the CGNS Steering Committee, or the
third author of this paper (Cosner) via e-mail at
raymond.r.cosner@boeing.com.

5. Dissemination & Implementation
CGNS has been welcome by the CFD community
worldwide. The effort of standardizing the data exchange
format for aerodynamic data is considered by most a
necessity long overdue. Since its first release in May 1998,
the CFD General Notation System has received an
overwhelming support from Academia, Industry, and
Research Agencies. At the time of writing, 240 users from
over 25 countries have registered at the CGNS web site. In

Milestone ISO Required
Completion Date

Planned
Completion Date

New Work Item
(NWI)

Oct 2000 Oct 2000

Working Draft Apr 2001
(6 mo. from NWI)

Oct 2000

Committee
Draft

Oct 2002
(2 yr. from NWI)

Apr 2001 ?

Final Draft
International
Standard

Oct 2003
(3 yr. from NWI)

2002 ?

Table 3. Schedule of ISO Standardization Milestones

AIAA 2000-0681

American Institute of Aeronautics and Astronautics
10

addition to implementing the CGNS standard into their
own applications, several users participate actively in
new extensions to the CGNS system.
The CGNS Steering Committee is aware of several CFD
applications, from both research and commercial
organizations in U.S.A. and Europe, having implemented
or interfaced with the CGNS standard successfully:
� PEGASUS/OVERFLOW – NASA Ames Research

Center
� CFL3D – NASA Langley Research Center
� Visual3 – M.I.T. and ICEM CFD Engineering
� Plot3D – NASA Ames Research Center
� NPARC – NPARC Alliance
� TLNS3D – Boeing Seattle and NASA Langley

Research Center
� ICEM CFD HEXA – ICEM CFD Engineering
� WIND – NPARC Alliance
� GASP V4 – Aerosoft, Inc.
� CFF – Boeing St-Louis
� UPS – NASA Langley Research Center
� HYDRA CFD – Oxford University and Rolls-Royce
� ADPAC – Rolls-Royce Allison
� Cart3D – NASA Ames Research Center
� APPT – Boeing Rocketdyne
� EURANUS – NUMECA International
� FIELDVIEW – Intelligent Light
� Tecplot – AMTEC Engineering, Inc.
Figure 7 illustrates an example of a typical CGNS file. It
is given to provide the reader with an idea of the type of
information that goes into a CGNS file and how it is
organized. This particular example is from the
structured-grid CFL3D code. It is for a one-zone grid (to
keep the example relatively short), and does not include
grid connectivity information, which would be necessary
for multiple zone grids or a single zone grid that
connected with itself. Each ADF node is represented
with its name and label (name/label). However, when
the only difference between the name and label is “_t”,
the name has been omitted.
The CGNS system was designed to provide a complete
description of CFD data, so that others could
unambiguously read and use it. This example is a 3-D
case in which volume data is recorded. The parameters
CellDimension and PhysicalDimension are
stored in the CGNSBase_t node, while
IndexDimension is recorded for each zone. The
Zone_t node contains information about the zone's grid
size, for example, (2 × 65 × 97) vertices and (1 × 64 ×
96) cells. ZoneType_t in this example specifies
Structured, and the grid coordinates are written
under GridCoordinates_t.

ROOT node

+ CGNSLibraryVersion_t

+ Base/CGNSBase_t

+ Zone1/Zone_t

+ ZoneType_t

+ GridCoordinates_t

+ CoordinateX/DataArray_t

+ CoordinateY/DataArray_t

+ CoordinateZ/DataArray_t

+ ZoneBC_t

+ Ilo_Seg1/BC_t

+ PointRange/IndexRange_t

+ CFL3Dtype/Descriptor_t

+ ...(other boundary conditions...)

+ FlowSolution_t

+ GridLocation_t

+ Rind_t

+ Density/DataArray_t

+ VelocityX/DataArray_t

+ ...(other solution arrays)

+ FlowEquationSet_t

+ EquationDimension/"int"

+ GoverningEquations_t

+ DiffusionModel/

"int[1+...+IndexDimension]"

+ GasModel_t

+ ViscosityModel_t

+ ThermalConductivityModel_t

+ TurbulenceClosure_t

+ TurbulenceModel_t

+ GlobalConvergenceHistory/

ConvergenceHistory_t

+ RSDMassRMS/DataArray_t

+ CoefLift/DataArray_t

+ ...(other convergence parameters)

+ DataClass_t

+ ReferenceState_t

+ Mach/DataArray_t

+ Reynolds/DataArray_t

+ VelocitySound/DataArray_t

+ ViscosityKinematic/DataArray_t

+ Density/DataArray_t

+ Length/DataArray_t

+ ...(other reference parameters)

Fig. 7 Example of Implementation

AIAA 2000-0681

American Institute of Aeronautics and Astronautics
11

The boundary conditions are specified under
ZoneBC_t. For example, the data for the boundary
patch “Ilo_Seg1” might be BCSymmetryPlane.
IndexRange_t gives the index range over which this
boundary condition applies. Note that in this example,
the user has also added the descriptor node under
ZoneBC_t called CFL3DType. This node is not part
of the CGNS standard, but rather was added for
convenience in order to tie in the CGNS boundary
condition identifier with a type specific to the CFL3D
code. Descriptors like this may be sprinkled throughout
the CGNS file. They provide an easy way to add
descriptive comments to a file for the benefit of present
or future readability. Their existence in no way limits
the ability of others to read and use the file.
Flow solution information is stored in data arrays under
the FlowSolution_t data structure. CFL3D gives
this information at cell centers; thus,
GridLocation_t specifies CellCenter in the
example. The node Rind_t indicates the number of
rind cells (ghost cells) at which flow solution
information is also given. For example, if there is one
rind cell specified at jlo and one at jhi, then the
expected dimensions of the data arrays in this example
would be (i × j × k) = (1 × 64 + 2 × 96).
The FlowEquationSet_t node contains information
about how the solution was run. In the example
presented here, EquationDimension is 3,
GoverningEquations is NSTurbulent,
GasModel is Ideal, ViscosityModel is
SutherlandLaw, ThermalConductivityModel
is ConstantPrandtl, TurbulenceClosure is
EddyViscosity, and TurbulenceModel is
OneEquation_SpalartAllmaras. The node
DiffusionModel indicates whether thin-layer or full
Navier-Stokes was used, and in which index directions.
The convergence history may be stored for each
individual zone or globally under the CGNSBase_t
node, as shown in this example. DataClass_t
specifies the type of data given. The class of data used
by the CFL3D code is NormalizedByUnknown-
Dimensional. Then, further information regarding
the reference quantities is given under
ReferenceState_t. The nodes Velocity-
Sound, ViscosityKinematic, Density and
Length give the reference levels by which all quantities
in the file have been nondimensionalized. Other nodes
such as Prandtl, Temperature, and
SpecificHeatRatio also appear in the file but have
been left off in the example for the sake of brevity.

6. Conclusion
This paper described the advances in the CGNS database
standard for aerodynamics and CFD. Since 1994, CGNS
has grown into a data standard sufficient to support the
majority of CFD applications while providing for easy data
exchange between sites, computing environments and
applications. Since the initial public release of the CGNS
documentation and software in May 1998, additions to the
standard included the incorporation of unstructured
topology and mesh-to-geometry association.
In parallel to the growth of the standard, the CGNS
organization has been transformed into an open and public
committee whose main purposes is to ensure the
continuation of CGNS. The CGNS Steering committee has
adopted in 1999 a Charter defining its governing rules and
mission. In addition to the maintenance of the current
standard, the CGNS Steering Committee has the
responsibility to allow for the growth of the standard. To
that effect, proposals for modifications and extensions of the
standard may be submitted by anyone. Three new proposals
for rigid and arbitrary grid motions, as well as time-accurate
data, have been reviewed and developed according to the
extension process defined in the new adopted Charter.
These proposals are at their last stage of approval before
being officially incorporated to the CGNS standard.
The CGNS standard is also the object of an ISO
standardization effort for Fluid Dynamics data. This
project, initiated by the Boeing Company, has been accepted
by the ISO organization and is now advancing to the third
stage of the ISO approval process.

References
1CGNS Team, “The CGNS System Overview and Entry
Level Document”, Draft, Version 1.0, May 1998.
2Allmaras, S., “CGNS Standard Interface Data Structures”,
Draft, May 1997.
3CGNS Team, “The ADF User’s Guide”, May 1997.
4CGNS Team, “SIDS-to-ADF File Mapping Manual”,
Version 1.1, June 1999.
5Poirier, D., “CGNS Mid-Level Library”, December 1999.
6Poirier, D., Allmaras, S., McCarthy, D., Smith, M.,
Enomoto, F.,“The CGNS System”, 39th AIAA Fluid
Dynamics Conference, AIAA-98-3007, Albuquerque, NM,
June 1998.
7“Guidelines for the Development and Approval of STEP
Application Protocols,” document number ISO TC 184/SC4
N535:1998(E), dated 18 December 1998.

	I
	Introduction
	2. Advances in the CGNS System
	
	2.1 Unstructured Analysis Data
	2.2. Geometry-to-Mesh Association
	2.3. Grid Motion
	2.4. Arbitrary Grid Motion
	2.5 Iterative and Time-Accurate Data

	3. CGNS Steering Committee
	4. Migration to an ISO standard
	5. Dissemination & Implementation
	
	6. Conclusion

	References

