
December 20, 2018 MS3.2 THG 2018-12-20.v4

Page 1 of 14

 MS 3.2 – Addressing Scalability: Scalability of open, close, flush
CASE STUDY: CGNS Hotspot analysis of CGNS cgp_open

The HDF Group

This report addresses scalability issues (MS 3.2) associated with opening an HDF5 file
which has a large quantity of metadata related to an application’s file format
specifications. More specifically, the metadata is stored in small HDF5 datasets, and all
the processes read the content of the entire dataset.

As a case study, this report first details a performance issue with the API cgp_open in
the CGNS library. Two solutions are then proposed to improve the performance: (1)
through an HDF5 library modification (the proc0-read-and-bcast solution), and (2) a
CGNS library modification (the use of compact dataset storage).

1 Rationale for the Investigation

1.1 Description of the Benchmark

The CGNS benchmark creates 128 bases with 32 zones in each base. The reported timing data is during
cgp_open of an already created CGNS file. The majority of the cgp_open time is spent in cgi_read, and
the remaining sections of the report break down the cascading calls in cgi_read. The number and size
of the reads during cgp_open for this case is as follows:

SIZE OF ARRAY TOTAL NUMBER OF
READS

SIZE PER READ
(BYTES)

TOTAL READ SIZE
(BYTES)

2X1 128 8 1,024

3X3 4096 72 294,912

10X1 4096 10 40,960

1X1 1 4 4

Total read size is ~329K. The systems used in this report were: Sky Bridge (Cray, Sandia National
Laboratories) and Edison (Cray, NERSC).

1.2 Benchmark Findings

In cgi_read, at line:
 for (b=0; b<cg->nbases; b++) if (cgi_read_base(&cg->base[b])) return CG_ERROR;

December 20, 2018 MS3.2 THG 2018-12-20.v4

Page 2 of 14

Sky Bridge timing:

1 process 24.4 s

2048 processes 781 s

The average time spent in the above cgi_read_base call at:

cgi_read_base:
 for (n=0; n<base->nzones; n++) {

 base->zone[n].id = id[n];

 base->zone[n].link = cgi_read_link(id[n]);

 base->zone[n].in_link = 0;

 if (cgi_read_zone(&base->zone[n])) return CG_ERROR;

 }

Sky Bridge timing:

1 process 0.14 s

2048 processes 5.95 s

The average time spent in cgi_read_zone at:

cgi_read_zone
 if (cgio_read_all_data(cg->cgio, node_id, data[0])) {

 cg_io_error("cgio_read_all_data");

 return CG_ERROR;

 }

Sky Bridge timing:

1 process 0.012s

2048 processes 5.46s

cgi_read_all_data calls the HDF5 APIs via ADFH_Read_All_Data.

December 20, 2018 MS3.2 THG 2018-12-20.v4

Page 3 of 14

The average time spent in ADFH_Read_All_Data in:

ADFH_Read_All_Data

 if (H5Dread(did, mid, H5S_ALL, H5S_ALL, xfer_prp, data) < 0)

 set_error(ADFH_ERR_DREAD, err);

 else

 set_error(NO_ERROR, err);

Sky Bridge timing:

1 process 0.00361 s

2048 processes 5.57 s

1.3 Summary of CGNS Benchmark

In general, this is a typical HDF5 use case where users augment the raw data with file format metadata
as either attributes or small datasets. In the case of CGNS, it is the base, zone and zone-type metadata.
While this means of organizing the data does not cause an issue when reading in serial (as the above
results show), but for the parallel case, having all the processes read all of the same data is not scalable.
One possible solution is to read and aggregate the metadata to fewer nodes and then do a broadcast
of the data to the remaining processes or to open the file in serial, read the metadata with one process,
and then have that process broadcast the metadata to all the other processes. The remaining sections
of the report investigate various solutions.

1.4 MPI IO only benchmark Investigation

A benchmark was written to simulate the poor read scaling performance using only MPI IO. The
benchmark writes an integer array of dimension 524,288 (2MB) and the file is closed. The file is opened,
and MPI_File_read_all is called 8192 times by all the process reading the same data. A single read
consists of a total of 64 bytes, and each read was offset from the previous read by 256 bytes.

The timing shows similar behavior as to that shown with CGNS on Sky Bridge:

1 process 0.15 s

2048 processes 470 s

December 20, 2018 MS3.2 THG 2018-12-20.v4

Page 4 of 14

Alternative options for reading the metadata:

(1) Read all the metadata on one process, then Bcast the metadata to the all the other
processes.

(2) Read one metadata entry on one process, then Bcast that metadata to all the other
processes. Repeat until all the metadata has been read (i.e., 8192 times for this case).

Option 0 (All processes read the metadata)

1 process 0.15 s

2048 processes 474 s

Option 1 (One MPI_Bcast of the metadata)

1 process 0.15 s

2048 processes 0.18 s

Option 2 (One MPI_Bcast per metadata entry)

1 process 0.17 s

2048 processes 0.27 s

1.5 CGNS benchmark on GPFS

The benchmark in the main section of the program was run on cetus (mira) at ANL:

The average time spent in ADFH_Read_All_Data in:

ADFH_Read_All_Data
 if (H5Dread(did, mid, H5S_ALL, H5S_ALL, xfer_prp, data) < 0)

 set_error(ADFH_ERR_DREAD, err);

 else

 set_error(NO_ERROR, err);

cetus (ANL) timing:

1 process 0.56 s

2048 processes** 25.1 s

December 20, 2018 MS3.2 THG 2018-12-20.v4

Page 5 of 14

** job was killed before all the H5Dreads had completed.

2 Alternative Prototype Metadata Read Options

Two alternative read options were investigated:

• read-proc0-and-bcast – A new transfer property flag was added to the HDF5 library to enable
reading the data on one process and then broadcasting the data to the other processes. CGNS
was changed to use this option when reading data that is less than 2MB.

• Compact Storage1 – A compact dataset is one in which the raw data is stored in the object
header of the dataset. This layout is for very small datasets that can easily fit in the object
header. The compact layout can improve storage and access performance for files that have
many very tiny datasets. With one I/O access both the header and data values can be read.
When collective metadata reading is enabled, H5Pset_all_coll_metadata_ops, and compact
storage is used, the metadata will be read by the root process and then broadcasted to the other
processes. Note that compact storage has fewer reads than the read-proc0-and-bcast solution.
Where applicable, the CGNS library was changed to used compact storage instead of
contiguous storage. Compact storage datasets have a hard limit of 64KiB. The CGNS
implementation uses compact storage datasets by default, but is changed to contiguous storage
for the cases of:

o Datasets greater than 64 KiB,
o Partial I/O of datasets, meaning IO access to data in a dataset is not exactly the same for

all processes. HDF5 can’t do partial parallel I/O with compact storage datasets.

CGNS benchmark with various options
In cgi_read, at line:

 for (b=0; b<cg->nbases; b++) if (cgi_read_base(&cg->base[b])) return CG_ERROR;

Sky Bridge (SNL) timing:

NUMBER OF PROCESSES Time (seconds)

1 24.4

2048 (H5FD_MPIO_COLLECTIVE) 781

2048 (H5FD_MPIO_PROC0_BCAST) 53.5

2048 (COMPACT STORAGE) 46.9

4096 (H5FD_MPIO_PROC0_BCAST) 106.1

4096 (COMPACT STORAGE) 65.1

8192 (H5FD_MPIO_PROC0_BCAST) 238.3

December 20, 2018 MS3.2 THG 2018-12-20.v4

Page 6 of 14

8192 (COMPACT STORAGE) 97.4, 109.9

Edison (LBNL) timing:

NUMBER OF PROCESSES Time

1 4.9

3072 (H5FD_MPIO_COLLECTIVE) 199.3

3072 (H5FD_MPIO_PROC0_BCAST) 12.9

3072 (COMPACT STORAGE) 14.5

6144 (H5FD_MPIO_COLLECTIVE) 417.6

6144 (H5FD_MPIO_PROC0_BCAST) 16.6

6144 (H5FD_MPIO_PROC0_BCAST) ** 18.7

6144 (COMPACT STORAGE) 14.4

12288 (H5FD_MPIO_PROC0_BCAST) ** 19.1 , 26.6

12288 (COMPACT STORAGE) 18.6

24576 (H5FD_MPIO_PROC0_BCAST) ** 31.1

24576 (COMPACT STORAGE) 23.4

** with an extra bcast (for read verification/error checking)

December 20, 2018 MS3.2 THG 2018-12-20.v4

Page 7 of 14

2.1 CGNS application benchmark

A CFD application was used to benchmark CGNS with: (1) compact storage and (2) read-proc0-and-
bcast. These results were reported by Greg Sjaardema from Sandia National Laboratories.

December 20, 2018 MS3.2 THG 2018-12-20.v4

Page 8 of 14

• Series 1 is the read-proc0-and-bcast solution
• Series 2 is a single MPI_Bcast
• Series 3 uses multiple MPI_Bcast totaling 2 MiB total data 64 bytes at a time (IIRC)
• Series 4 is unmodified CGNS develop
• Compact is using compact storage
• Compact 192 is also using compact storage
• Compact 384 is also using compact storage

The last 3 “compact” curves are just three different batch jobs on 192, 384, and 552 nodes (with 36
core/node). The Series 2 and 3 curves are not related to the CGNS benchmark, but give a qualitative
indication on the scaling behavior of MPI_Bcast. Both read-proc0-and-bcast and compact storage
follow MPI_Bcast’s trend, which makes sense since both methods rely on MPI_Bcast.

2.2 Side investigation: HDF5 small writes of the same values benchmark

2.2.1 HDF5 only test
A benchmark was written to compare writing a small amount of the same data to a file. An integer
array of ten elements (i.e., 40 bytes) is written by having:

1. One process creates the file, writes the array, and closes the file.
2. All the processes write the same data to the same location in the file, this is done

independently and collectively.

Ti
m

e
(S

ec
.)

Number of Processes

December 20, 2018 MS3.2 THG 2018-12-20.v4

Page 9 of 14

Edison (LBNL)

NUMBER OF PROCESSES TIME (SECONDS)

1 0.052

3072 (INDEPENDENT) 98.5

3072 (COLLECTIVE) 0.647

6144 (INDEPENDENT) 171.2

6144 (COLLECTIVE) 1.54

12288 (INDEPENDENT) ** timed out after 10 minutes **

12288 (COLLECTIVE) 1.81

Sky Bridge (SNL)

NUMBER OF PROCESSES TIME (SECONDS)

1 0.012 - 0.020

 2048 (INDEPENDENT) 1.5

 2048 (COLLECTIVE) 0.17

 4096 (INDEPENDENT) 4.7

 4096 (COLLECTIVE) 0.49

 8192 (INDEPENDENT) 10.1

 8192 (COLLECTIVE) 2.4

2.2.2 CGNS test – Only process zero writes
The option to write only with process zero was added to both HDF5 and CGNS for writes of the same
data that are less than 4MB.

Edison (LBNL)

NUMBER OF PROCESSES TIME (SECONDS)

1536 (COLLECTIVE) 2.82

1536 (PROC 0) 2.73

3072 (COLLECTIVE) 3.71

3072 (PROC 0) 3.36

December 20, 2018 MS3.2 THG 2018-12-20.v4

Page 10 of 14

6144 (COLLECTIVE) 4.304

6144 (PROC0) ---

3 Summary of CGNS modifications for scalable read performance
The following changes to the CGNS library should be made:

(1) Switch to using compact datasets where applicable. As far as reading the new compact storage CGNS
files, HDF5 handles this switch automatically, i.e. the same CGNS code paths are used to treat
both compact and contiguous datasets. An older version of CGNS will not have an issue
reading compact datasets since they are in HDF5 versions 1.8 onward. However, to get
scalable parallel performance, compact storage needs to be used with collective metadata
APIs, and those APIs are only available in HDF5 versions 1.10 onward.

(2) Use the read-proc0-and-bcast option when compact storage is not used. This addresses the
disadvantage that older CGNS files that don’t use compact storage would not scale at large
process counts. This option also addresses the case where updating historical CGNS files is not
feasible. Furthermore, compact storage is limit to datasets that are less than 64 KiB in size, so
datasets exceeding this value would need to use the read-proc0-and-bcast option.

From an applications perspective, these proposed changes would be transparent. Also, this is not a CGNS
file format change; it just changes internally how the HDF5 library stores the data.

4 The h5dread parallel extension proposal

There are currently two overarching implementations: (1) Give the user complete control to specify
the read-proc0-and-bcast solution (Sections 4.1-4.4), or (2) handle switching to the read-proc0-and-
bcast solution automatically within the HDF5 library (Section 4.5). For case (1), there are primarily
three implementation strategies for reading by process zero and broadcasting the resulting buffer,
Section 2. The three implementations address compromises between performance and user error
protection.

4.1 Implementation Option 1

Implementation 1 is precisely what was prototyped in Section 2. Namely, the lowest process in the MPI
communicator reads the data and then broadcasts the data to the remaining processes in the MPI
communicator. There are no checks:

1. That all the processors are reading the same data.
2. That the amount of data being read and broadcasted is of a reasonable size.

This implementation relies on the user, with no checking in the HDF5 library, to explicitly use this option
only when all the processors are reading the same value. This option will always return a read value
that is the same for all the processes, regardless of whether this was the actual read usage from the
application. Thus, it is possible for a read to “succeed” but return the wrong data.

December 20, 2018 MS3.2 THG 2018-12-20.v4

Page 11 of 14

The main advantage of this option is it has the highest potential in performance since there is a
minimum number of broadcasts: (1) the read data, and (2) a one element value being broadcasted. The
later (2) is used to determine if the actual number of bytes requested is greater than the bytes read,
and if so, the buffer gives zeroes beyond the end of the physical MPI file. This last broadcast (2) can be
combined with the read data broadcast (1) to eliminate the need for the extra broadcast.

4.2 Implementation Option 2

This implementation option adds additional checking to implementation option 1. This implementation
checks that the read buffer’s offset and size are all the same on all the processors. An additional option
would allow the user control for whether or not this check occurs. Overall, this check would add an
MPI_Gather to Implementation 1.

If the check is enabled, this option ensures that either the correct data is read by all ranks, or that the
read fails. With the check disabled, it is the same as Implementation 1.

4.3 Implementation Option 3

This option ensures that the read on each rank returns the expected data even if the reads are different.
Implementation 3 has all the processes send to the lowest processes in the communicator the read
buffer’s offset and size, as in implementation option 2. If these two parameters all matched, then the
gathering process would read the data and broadcast the value to all the matching processes. However,
if the parameters do not match, then the gathering processes would read the buffer using the settings
from each mismatching process. It would then send the read buffer back to those mismatching
processes. This implementation would switch from using an MPI Broadcast to using MPI send and
receives when mismatching process parameters were detected, and the performance of using send
and receives instead of a broadcast is unknown. In general, this implementation does not impose that
all the values read are the same, and in fact can handle cases where the application purposely does not
intend the values to be the same. This implementation can also include an option to override all checks
and impose all reads return the same value.

P1
Read
Data

…
Po

Bytes
Read

MPI_Bcast
…
…
…

Po

Pn
…

P1
Read
Data

…
Po

Bytes
Read

MPI_Bcast …
…
…

Po

Pn
…

…

Po
P1

Offset Size
Pn

MPI_Gather
r

Po …

December 20, 2018 MS3.2 THG 2018-12-20.v4

Page 12 of 14

4.4 Implementation Issues

All three implementations can fairly easily be implemented into the current HDF5 library. However,
options two and three would need to be re-addressed when Selection I/O is introduced into HDF5. This
new programming model would make the determination of whether the data is the same between
processors much more difficult. In that case, the implementation would fail back to implementation
one until the feature can be implemented into the new Object Selections model.

4.5 Implementation 4: Automatic proc0-read-and-bcast switching in HDF5

The final (and to be completed) implementation uses elements from the previously mentioned
implementations. In the HDF5 library, all the processes are reading the same data if they all set the
dataset selection to H5S_ALL. To determine this requires an MPI_Allreduce. Fortunately, HDF5 already
does an MPI_Allreduce for deciding whether to use collective or independent I/O and therefore an
additional MPI_Allreduce is not needed in this implementation.

 A second criterion in automatically switching to read-proc0-and-bcast is to determine at what
dataset size does it becomes faster to do a (1) read-by-all instead of doing a (2) read-proc0-and-bcast.
A simple MPI I/O code which does both cases (1) and (2) was developed to determine a possible dataset
size to make the switch between the two cases. The code was run on Edison at NERSC on both GPFS
and Lustre, Figure 1 and Figure 2 respectively. There is no clear point at which time the read-by-all
outperforms the read-proc0-and-bcast. However, as a result of the way HDF5 handles the mpi read
(i.e., by the use of derived types), it is not feasible to handle broadcasts of larger than 2GiB. Therefore,
a dataset size limit of less than 2GiB for the read-proc0-and-bcast will be used, and datasets greater
than 2GiB will revert to using read-by-all. The case of reading an entire, greater than 2GiB dataset, by
all the processes should not be a common practice and should be discouraged. For example, on CORI
at NERSC, assuming one process per core, reading a 2GiB dataset would consume 64GB of 128GB
available memory on a node. Other machine architectures would have similar memory issues in this
scenario. Furthermore, the less than 2GiB limitation meets the needs of the current use cases intended
for this feature. Alternatively, in cases of greater than 2GiB dataset reads-all is required, the application
has the option of implementing the read-proc0-and-bcast within the application itself.

P1 Read
Data

…
Po

Bytes Read

MPI_Bcast
…
…
…

Po

Pn
…

Offset
 Size

Pn

MPI_Gather Po …
Po
P1 …

P1 …
Po

MPI_Send,
MPI_Recv

…

…
…

Po

Pn
…

OR

December 20, 2018 MS3.2 THG 2018-12-20.v4

Page 13 of 14

Figure 1 Comparison of read-proc0-and-bcast and read-by-all timing on GPFS (Edison, NERSC).

Figure 2 Comparison of read-proc0-and-bcast and read-by-all timing on Lustre (Edison, NERSC).

5 Conclusion

Guided by the previously highlighted implementations studies, the proposed changes to the CGNS and HDF5 library
are:

1. Switch to using compact datasets where applicable in CGNS. As far as reading the new compact
storage CGNS files, HDF5 handles this switch automatically, i.e. the same CGNS code paths
are used to treat both compact and contiguous datasets. An older version of CGNS will not
have an issue reading compact datasets since they are in HDF5 versions 1.8 onward. However,
to get scalable parallel performance, compact storage needs to be used with collective metadata
APIs, and those APIs are only available in HDF5 versions 1.10 onward.

2. Use a version of HDF5 (1.10.5 onward) where the read-proc0-and-bcast is available to handle
the case when compact storage is not used. This addresses the disadvantage that older CGNS
files that don’t use compact storage would not scale at large process counts. This option also
addresses the case where updating historical CGNS files are not feasible. Furthermore,

December 20, 2018 MS3.2 THG 2018-12-20.v4

Page 14 of 14

compact storage is limit to datasets that are less than 64 KiB in size, so datasets exceeding this
value would need to use the read-proc0-and-bcast option.

From an applications perspective, these proposed changes would be transparent. Also, this is not a
CGNS file format change; it just changes internally how the HDF5 library stores the data.

References
[1] HDF5 User’s Guide, https://support.hdfgroup.org/HDF5/Tutor/layout.html

